Histotripsy of Subcutaneous Fat in a Live Porcine Model

Hales CM. Prevalence of obesity among adults and youth: United States, 2015–2016. 2017;(288):8.

Coelho M, Oliveira T, Fernandes R. Biochemistry of adipose tissue: an endocrine organ. Arch Med Sci AMS. 2013;9(2):191–200.

CAS  Article  Google Scholar 

Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science. 1993;259(5091):87–91.

CAS  Article  Google Scholar 

The American Society for, Aesthetic Plastic Surgery. Cosmetic Surgery National Data Bank Statistics for 2017 [Internet]. The American Society for Aesthetic Plastic Surgery; 2017 [cited 2018 Nov 1]. Available from: https://www.surgery.org/sites/default/files/ASAPS-Stats2017.pdf

Cao H, Long X, Zhang H, Xu L, Liu Z, Wang X. The efficacy and safety study of JCS-01 non-invasive focused ultrasound fat reduction machine. Zhongguo Yi Liao Qi Xie Za Zhi 2012;36(5):370–372, 381.

Coleman W, Coleman W, Weiss R, Kenkel J, Ad-El D, Amir R. A multicenter controlled study to evaluate multiple treatments with nonthermal focused ultrasound for noninvasive fat reduction. Dermatol Surg. 2017;43(1):50–7.

CAS  Article  Google Scholar 

Gold MH, Patrick Coleman W, William Coleman I, Weiss R. A randomized, controlled multicenter study evaluating focused ultrasound treatment for fat reduction in the flanks. J Cosmet Laser Ther. 2019;21(1):44–8.

Article  Google Scholar 

Hong J, Ko E, Choi S, et al. Efficacy and safety of high-intensity focused ultrasound for noninvasive abdominal subcutaneous fat reduction. Dermatol Surg. 2020;46(2):213–9.

CAS  Article  Google Scholar 

Kwon T-R, Im S, Jang Y-J, et al. Improved methods for evaluating pre-clinical and histological effects of subcutaneous fat reduction using high-intensity focused ultrasound in a porcine model. Skin Res Technol. 2017;23(2):194–201.

Article  Google Scholar 

Lee HJ, Lee M-H, Lee SG, Yeo U-C, Chang SE. Evaluation of a novel device, high-intensity focused ultrasound with a contact cooling for subcutaneous fat reduction. Lasers Surg Med. 2016;48(9):878–86.

Article  Google Scholar 

Saedi N, Kaminer M. New waves for fat reduction: high-intensity focused ultrasound. Semin Cutan Med Surg. 2013;32(1):26–30.

PubMed  Google Scholar 

Weinstein Velez M, Ibrahim O, Petrell K, Dover JS. Nonthermal pulsed ultrasound treatment for the reduction in abdominal fat. J Clin Aesthetic Dermatol. 2018;11(9):32–6.

Google Scholar 

Wilkerson EC, Bloom BS, Goldberg DJ. Clinical study to evaluate the performance of a noninvasive focused ultrasound device for thigh fat and circumference reduction compared to control. J Cosmet Dermatol. 2018;17(2):157–61.

Article  Google Scholar 

Zhou B, Leung BYK, Sun L. The Effects of Low-Intensity Ultrasound on Fat Reduction of Rat Model. BioMed Res Int [Internet] 2017 [cited 2020 Oct 23];2017. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5587957/

Alizadeh Z, Halabchi F, Mazaheri R, Abolhasani M, Tabesh M. Review of the Mechanisms and Effects of Noninvasive Body Contouring Devices on Cellulite and Subcutaneous Fat. Int J Endocrinol Metab [Internet] 2016 [cited 2020 Apr 15];14(4). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5236497/

Kennedy J, Verne S, Griffith R, Falto-Aizpurua L, Nouri K. Non-invasive subcutaneous fat reduction: a review. J Eur Acad Dermatol Venereol. 2015;29(9):1679–88.

CAS  Article  Google Scholar 

Vlaisavljevich E, Maxwell A, Mancia L, Johnsen E, Cain C, Xu Z. Visualizing the histotripsy process: bubble cloud-cancer cell interactions in a tissue-mimicking environment. Ultrasound Med Biol. 2016;42(10):2466–77.

Article  Google Scholar 

Vlaisavljevich E, Kim Y, Owens G, Roberts W, Cain C, Xu Z. Effects of tissue mechanical properties on susceptibility to histotripsy-induced tissue damage. Phys Med Biol. 2014;59(2):253–70.

Article  Google Scholar 

Swietlik JF, Mauch SC, Knott EA, et al. Noninvasive thyroid histotripsy treatment: proof of concept study in a porcine model. Int J Hyperthermia Taylor & Francis; 2021;38(1):798–804.

Knott EA, Swietlik JF, Longo KC, et al. Robotically-assisted sonic therapy for renal ablation in a live porcine model: initial preclinical results. J Vasc Interv Radiol JVIR. 2019;30(8):1293–302.

Article  Google Scholar 

Longo KC, Knott EA, Watson RF, et al. Robotically assisted sonic therapy (RAST) for noninvasive hepatic ablation in a porcine model: mitigation of body wall damage with a modified pulse sequence. Cardiovasc Intervent Radiol. 2019;42(7):1016–23.

Article  Google Scholar 

Smolock AR, Cristescu MM, Vlaisavljevich E, et al. Robotically Assisted Sonic Therapy as a Noninvasive Nonthermal Ablation Modality: Proof of Concept in a Porcine Liver Model. Radiology Radiological Society of North America; 2018;287(2):485–493.

Kaoutzanis C, Gupta V, Winocour J, et al. Cosmetic liposuction: preoperative risk factors, major complication rates, and safety of combined procedures. Aesthet Surg J. 2017;37(6):680–94.

Article  Google Scholar 

Alderman A, Collins E, Streu R, et al. Benchmarking outcomes in plastic surgery: national complication rates for abdominoplasty and breast augmentation ‘outcomes article]. Plast Reconstr Surg. 2009;124(6):2127–33.

CAS  Article  Google Scholar 

Maxwell AD, Cain CA, Hall TL, Fowlkes JB, Xu Z. Probability of cavitation for single ultrasound pulses applied to tissues and tissue-mimicking materials. Ultrasound Med Biol. 2013;39(3):449–65.

Article  Google Scholar 

留言 (0)

沒有登入
gif