NRF2 mediates melanoma addiction to GCDH by modulating apoptotic signalling

Palm, W. & Thompson, C. B. Nutrient acquisition strategies of mammalian cells. Nature 546, 234–242 (2017).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Zhu, J. & Thompson, C. B. Metabolic regulation of cell growth and proliferation. Nat. Rev. Mol. Cell Biol. 20, 436–450 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Vander Heiden, M. G. & DeBerardinis, R. J. Understanding the intersections between metabolism and cancer biology. Cell 168, 657–669 (2017).

PubMed Central  Article  CAS  Google Scholar 

Lieu, E. L., Nguyen, T., Rhyne, S. & Kim, J. Amino acids in cancer. Exp. Mol. Med 52, 15–30 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Hirschey, M. D. & Zhao, Y. Metabolic regulation by lysine malonylation, succinylation, and glutarylation. Mol. Cell Proteom. 14, 2308–2315 (2015).

CAS  Article  Google Scholar 

Altman, B. J., Stine, Z. E. & Dang, C. V. From Krebs to clinic: glutamine metabolism to cancer therapy. Nat. Rev. Cancer 16, 619–634 (2016).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Butler, M., van der Meer, L. T. & van Leeuwen, F. N. Amino acid depletion therapies: starving cancer cells to death. Trends Endocrinol. Metab. 32, 367–381 (2021).

CAS  PubMed  Article  Google Scholar 

Lukey, M. J., Katt, W. P. & Cerione, R. A. Targeting amino acid metabolism for cancer therapy. Drug Discov. Today 22, 796–804 (2017).

CAS  PubMed  Article  Google Scholar 

Chaturvedi, S., Hoffman, R. M. & Bertino, J. R. Exploiting methionine restriction for cancer treatment. Biochem. Pharmacol. 154, 170–173 (2018).

CAS  PubMed  Article  Google Scholar 

Knott, S. R. V. et al. Asparagine bioavailability governs metastasis in a model of breast cancer. Nature 554, 378–381 (2018).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Maddocks, O. D. K. et al. Modulating the therapeutic response of tumours to dietary serine and glycine starvation. Nature 544, 372–376 (2017).

CAS  PubMed  Article  Google Scholar 

Chang, C. H. et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162, 1229–1241 (2015).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Nakaya, M. et al. Inflammatory T cell responses rely on amino acid transporter ASCT2 facilitation of glutamine uptake and mTORC1 kinase activation. Immunity 40, 692–705 (2014).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Cruzat, V., Macedo Rogero, M., Noel Keane, K., Curi, R. & Newsholme, P. Glutamine: metabolism and immune function, supplementation and clinical translation. Nutrients 10, 1564 (2018).

PubMed Central  Article  CAS  Google Scholar 

O’Neill, L. A., Kishton, R. J. & Rathmell, J. A guide to immunometabolism for immunologists. Nat. Rev. Immunol. 16, 553–565 (2016).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Ananieva, E. Targeting amino acid metabolism in cancer growth and anti-tumor immune response. World J. Biol. Chem. 6, 281–289 (2015).

PubMed  PubMed Central  Article  Google Scholar 

Pathria, G. & Ronai, Z. A. Harnessing the co-vulnerabilities of amino acid-restricted cancers. Cell Metab. 33, 9–20 (2021).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Pathria, G. et al. Translational reprogramming marks adaptation to asparagine restriction in cancer. Nat. Cell Biol. 21, 1590–1603 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Kim, H. et al. PRMT5 control of cGAS/STING and NLRC5 pathways defines melanoma response to antitumor immunity. Sci. Transl. Med. 12, eaaz5683 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Leandro, J. & Houten, S. M. The lysine degradation pathway: subcellular compartmentalization and enzyme deficiencies. Mol. Genet. Metab. 131, 14–22 (2020).

CAS  PubMed  Article  Google Scholar 

Fallarino, F. et al. Modulation of tryptophan catabolism by regulatory T cells. Nat. Immunol. 4, 1206–1212 (2003).

CAS  PubMed  Article  Google Scholar 

Schmiesing, J. et al. Disease-linked glutarylation impairs function and interactions of mitochondrial proteins and contributes to mitochondrial heterogeneity. Cell Rep. 24, 2946–2956 (2018).

CAS  PubMed  Article  Google Scholar 

Tan, M. et al. Lysine glutarylation is a protein posttranslational modification regulated by SIRT5. Cell Metab. 19, 605–617 (2014).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Biagosch, C. et al. Elevated glutaric acid levels in Dhtkd1-/Gcdh-double knockout mice challenge our current understanding of lysine metabolism. Biochim. Biophys. Acta Mol. Basis Dis. 1863, 2220–2228 (2017).

CAS  PubMed  Article  Google Scholar 

Wajner, M., Amaral, A. U., Leipnitz, G. & Seminotti, B. Pathogenesis of brain damage in glutaric acidemia type I: lessons from the genetic mice model. Int J. Dev. Neurosci. 78, 215–221 (2019).

CAS  PubMed  Article  Google Scholar 

Zinnanti, W. J. et al. A diet-induced mouse model for glutaric aciduria type I. Brain 129, 899–910 (2006).

PubMed  Article  Google Scholar 

Seminotti, B. et al. Oxidative stress, disrupted energy metabolism, and altered signaling pathways in glutaryl-CoA dehydrogenase knockout mice: potential implications of quinolinic acid toxicity in the neuropathology of glutaric acidemia type I. Mol. Neurobiol. 53, 6459–6475 (2016).

CAS  PubMed  Article  Google Scholar 

Rojo de la Vega, M., Chapman, E. & Zhang, D. D. NRF2 and the hallmarks of cancer. Cancer Cell 34, 21–43 (2018).

CAS  PubMed  Article  Google Scholar 

Malhotra, D. et al. Global mapping of binding sites for Nrf2 identifies novel targets in cell survival response through ChIP–seq profiling and network analysis. Nucleic Acids Res. 38, 5718–5734 (2010).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Hoetzenecker, W. et al. ROS-induced ATF3 causes susceptibility to secondary infections during sepsis-associated immunosuppression. Nat. Med. 18, 128–134 (2011).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Romero, R. et al. Keap1 mutation renders lung adenocarcinomas dependent on Slc33a1. Nat. Cancer 1, 589–602 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Teske, N. et al. Chemical hypoxia-induced integrated stress response activation in oligodendrocytes is mediated by the transcription factor nuclear factor (erythroid-derived 2)-like 2 (NRF2). J. Neurochem. 144, 285–301 (2018).

CAS  PubMed  Article  Google Scholar 

Wakabayashi, N. et al. Keap1-null mutation leads to postnatal lethality due to constitutive Nrf2 activation. Nat. Genet. 35, 238–245 (2003).

CAS  PubMed  Article  Google Scholar 

Menegon, S., Columbano, A. & Giordano, S. The dual roles of NRF2 in cancer. Trends Mol. Med. 22, 578–593 (2016).

CAS  PubMed  Article  Google Scholar 

Sporn, M. B. & Liby, K. T. NRF2 and cancer: the good, the bad and the importance of context. Nat. Rev. Cancer 12, 564–571 (2012).

CAS  PubMed  Article  Google Scholar 

Wu, Z. et al. TPO-induced metabolic reprogramming drives liver metastasis of colorectal cancer CD110+ tumor-initiating cells. Cell Stem Cell 17, 47–59 (2015).

CAS  PubMed  Article  Google Scholar 

Cantor, J. R. et al. Physiologic medium rewires cellular metabolism and reveals uric acid as an endogenous inhibitor of UMP synthase. Cell 169, 258–272 e217 (2017).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Mungrue, I. N., Pagnon, J., Kohannim, O., Gargalovic, P. S. & Lusis, A. J. CHAC1/MGC4504 is a novel proapoptotic component of the unfolded protein response, downstream of the ATF4–ATF3–CHOP cascade. J. Immunol. 182, 466–476 (2009).

CAS  PubMed 

留言 (0)

沒有登入
gif