Investigation of the effect of meclofenamic acid on the proteome of LNCaP cells reveals changes in alternative polyadenylation and splicing machinery

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.

Article  PubMed  Google Scholar 

Merriel SWD, Funston G, Hamilton W. Prostate cancer in primary care. Adv Ther. 2018;35(9):1285–94.

PubMed  PubMed Central  Article  Google Scholar 

Heidenreich A. Novel therapies for advanced urologic cancers. Curr Opin Urol. 2020;30(4):594–601.

PubMed  Article  Google Scholar 

Fujita K, Hayashi T, Matsushita M, Uemura M, Nonomura N. Obesity, inflammation, and prostate cancer. J Clin Med. 2019;8(2):201.

CAS  PubMed Central  Article  Google Scholar 

Brennen WN, Isaacs JT. Cellular origin of androgen receptor pathway-independent prostate cancer and implications for therapy. Cancer Cell. 2017;32(4):399–401.

CAS  PubMed  Article  Google Scholar 

Tan BL, Norhaizan ME. Oxidative stress, diet and prostate cancer. World J Mens Health. 2021;39(2):195–207.

PubMed  Article  Google Scholar 

Sugar LM. Inflammation and prostate cancer. Can J Urol. 2006;13(Suppl 1):46–7.

PubMed  Google Scholar 

Kalgutkar AS, Crews BC, Rowlinson SW, Marnett AB, Kozak KR, Remmel RP, et al. Biochemically based design of cyclooxygenase-2 (COX-2) inhibitors: facile conversion of nonsteroidal antiinflammatory drugs to potent and highly selective COX-2 inhibitors. Proc Natl Acad Sci USA. 2000;97(2):925–30.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Skarydova L, Zivna L, Xiong G, Maser E, Wsol V. AKR1C3 as a potential target for the inhibitory effect of dietary flavonoids. Chem Biol Interact. 2009;178(1–3):138–44.

CAS  PubMed  Article  Google Scholar 

Guise CP, Abbattista MR, Singleton RS, Holford SD, Connolly J, Dachs GU, et al. The bioreductive prodrug PR-104A is activated under aerobic conditions by human aldo-keto reductase 1C3. Cancer Res. 2010;70(4):1573–84.

CAS  PubMed  Article  Google Scholar 

Byrns MC, Jin Y, Penning TM. Inhibitors of type 5 17beta-hydroxysteroid dehydrogenase (AKR1C3): overview and structural insights. J Steroid Biochem Mol Biol. 2011;125(1–2):95–104.

CAS  PubMed  Article  Google Scholar 

Kovala-Demertzi D, Dokorou V, Primikiri A, Vargas R, Silvestru C, Russo U, et al. Organotin meclofenamic complexes: synthesis, crystal structures and antiproliferative activity of the first complexes of meclofenamic acid - novel anti-tuberculosis agents. J Inorg Biochem. 2009;103(5):738–44.

CAS  PubMed  Article  Google Scholar 

Soh JW, Weinstein IB. Role of COX-independent targets of NSAIDs and related compounds in cancer prevention and treatment. Prog Exp Tumor Res. 2003;37:261–85.

CAS  PubMed  Article  Google Scholar 

Schober W, Kehlbach R, Gebert R, Wiskirchen J, Rodegerdts E, Claussen CD, et al. Meclofenamic acid for inhibition of human vascular smooth muscle cell proliferation and migration: an in vitro study. Cardiovasc Intervent Radiol. 2002;25(1):57–63.

PubMed  Article  Google Scholar 

Lee YT, Wang Q. Inhibition of hKv2.1, a major human neuronal voltage-gated K+ channel, by meclofenamic acid. Eur J Pharmacol. 1999;378(3):349–56.

CAS  PubMed  Article  Google Scholar 

Veruki ML, Hartveit E. Meclofenamic acid blocks electrical synapses of retinal AII amacrine and on-cone bipolar cells. J Neurophysiol. 2009;101(5):2339–47.

CAS  PubMed  Article  Google Scholar 

Huang Y, Yan J, Li Q, Li J, Gong S, Zhou H, et al. Meclofenamic acid selectively inhibits FTO demethylation of m6A over ALKBH5. Nucleic Acids Res. 2015;43(1):373–84.

CAS  PubMed  Article  Google Scholar 

Cui Q, Shi H, Ye P, Li L, Qu Q, Sun G, et al. m(6)A RNA methylation regulates the self-renewal and tumorigenesis of glioblastoma stem cells. Cell Rep. 2017;18(11):2622–34.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Yang B, Wang JQ, Tan Y, Yuan R, Chen ZS, Zou C. RNA methylation and cancer treatment. Pharmacol Res. 2021;174:105937.

CAS  PubMed  Article  Google Scholar 

Uslubas I, Kanli A, Kasap M, Akpinar G, Karabas L. Effect of aflibercept on proliferative vitreoretinopathy: proteomic analysis in an experimental animal model. Exp Eye Res. 2021;203:108425.

CAS  PubMed  Article  Google Scholar 

Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43(Database issue):D447–52.

CAS  PubMed  Article  Google Scholar 

Chen J, Du B. Novel positioning from obesity to cancer: FTO, an m(6)A RNA demethylase, regulates tumour progression. J Cancer Res Clin Oncol. 2019;145(1):19–29.

CAS  PubMed  Article  Google Scholar 

Attard G, Parker C, Eeles RA, Schroder F, Tomlins SA, Tannock I, et al. Prostate cancer. Lancet. 2016;387(10013):70–82.

PubMed  Article  Google Scholar 

Deng X, Su R, Weng H, Huang H, Li Z, Chen J. RNA N(6)-methyladenosine modification in cancers: current status and perspectives. Cell Res. 2018;28(5):507–17.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Yamato I, Sho M, Shimada K, Hotta K, Ueda Y, Yasuda S, et al. PCA-1/ALKBH3 contributes to pancreatic cancer by supporting apoptotic resistance and angiogenesis. Cancer Res. 2012;72(18):4829–39.

CAS  PubMed  Article  Google Scholar 

Tasaki M, Shimada K, Kimura H, Tsujikawa K, Konishi N. ALKBH3, a human AlkB homologue, contributes to cell survival in human non-small-cell lung cancer. Br J Cancer. 2011;104(4):700–6.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Hotta K, Sho M, Fujimoto K, Shimada K, Yamato I, Anai S, et al. Clinical significance and therapeutic potential of prostate cancer antigen-1/ALKBH3 in human renal cell carcinoma. Oncol Rep. 2015;34(2):648–54.

CAS  PubMed  Article  Google Scholar 

Yuan Y, Du Y, Wang L, Liu X. The M6A methyltransferase METTL3 promotes the development and progression of prostate carcinoma via mediating MYC methylation. J Cancer. 2020;11(12):3588–95.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Soriano-Hernandez AD, Galvan-Salazar HR, Montes-Galindo DA, Rodriguez-Hernandez A, Martinez-Martinez R, Guzman-Esquivel J, et al. Antitumor effect of meclofenamic acid on human androgen-independent prostate cancer: a preclinical evaluation. Int Urol Nephrol. 2012;44(2):471–7.

CAS  PubMed  Article  Google Scholar 

Delgado-Enciso I, Soriano-Hernandez AD, Rodriguez-Hernandez A, Galvan-Salazar HR, Montes-Galindo DA, Martinez-Martinez R, et al. Histological changes caused by meclofenamic acid in androgen-independent prostate cancer tumors: evaluation in a mouse model. Int Braz J Urol. 2015;41(5):1002–7.

PubMed  PubMed Central  Article  Google Scholar 

Sekine Y, Nakayama H, Miyazawa Y, Kato H, Furuya Y, Arai S, et al. Simvastatin in combination with meclofenamic acid inhibits the proliferation and migration of human prostate cancer PC-3 cells via an AKR1C3 mechanism. Oncol Lett. 2018;15(3):3167–72.

PubMed  Google Scholar 

Guzman-Esquivel J, Mendoza-Hernandez MA, Tiburcio-Jimenez D, Avila-Zamora ON, Delgado-Enciso J, De-Leon-Zaragoza L, et al. Decreased biochemical progression in patients with castration-resistant prostate cancer using a novel mefenamic acid anti-inflammatory therapy: a randomized controlled trial. Oncol Lett. 2020;19(6):4151–60.

CAS  PubMed  PubMed Central  Google Scholar 

Sahinoz B., Kanli A. Meclofenamic Acid, a Pharmacological Agent, Regulates the m6A Level by Inhibition the FTO Protein in Prostate Cancer Cell Line LNCaP Cells February 13–14, 2021/Ankara, Turkey pages: ISBN: 978-605-74616-0-5 2nd International Congress of Multidisciplinary Studies in Medical Sciences; 2021 25.02.2021; Ankara, Turkey IKSAD GLOBAL Publications – 2021. https://www.iksadcongress.org/_files/ugd/614b1f_1a08970eb403468fa177eec4165841e9.pdf

Kanli A, Kasap M, Akpinar G, Yanar S. Changes occuring in the proteome of SH-SY5Y cells coused by Fat Mass and Obesity asccociated (FTO) protein expression reveals multifaced properties ıf the FTO protein. Kocaeli Üniversitesi Sağlık Bilimleri Dergisi. 2020;6(2):101–12.

Article  Google Scholar 

Obeng EA, Stewart C, Abdel-Wahab O. Altered RNA processing in cancer pathogenesis and therapy. Cancer Discov. 2019;9(11):1493–510.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Pereira B, Billaud M, Almeida R. RNA-binding proteins in cancer: old players and new actors. Trends Cancer. 2017;3(7):506–28.

CAS  PubMed  Article  Google Scholar 

Takagaki Y, Manley JL. Complex protein interactions within the human polyadenylation machinery identify a novel component. Mol Cell Biol. 2000;20(5):1515–25.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Yeh HS, Yong J. Alternative polyadenylation of mRNAs: 3′-untranslated region matters in gene expression. Mol Cells. 2016;39(4):281–5.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Chen W, Jia Q, Song Y, Fu H, Wei G, Ni T. Alternative Polyadenylation: Methods, Findings, and Impacts. Genom Proteomics Bioinform. 2017;15(5):287–300.

Article 

留言 (0)

沒有登入
gif