It has long become clear that in spite of generally lacking internal membrane systems, bacteria contain well-structured subcellular structures of usually filamentous proteins, and a preferred 3D arrangement of their chromosome(s). Some of these systems are set up by so-called cytoskeletal elements, or by polar landmark proteins, but the mechanism of specific localization is still unclear in most cases. Intriguingly, apart from such spatially organizing systems, the bacterial cytoplasm has unusual properties in terms of the diffusion of molecules, which varies between different sites within the cell. In many bacteria, chromosomes are compacted into centrally located nucleoids, being orderly folded as opposed to consisting of random coils of DNA. In these bacteria, there is a separation of transcription and translation, such that transcription by RNA polymerase occurs on the nucleoids, and translation takes place mostly at the cell poles and directly underneath the cell membrane, because 70S ribosomes accumulate at sites surrounding the nucleoids. Interestingly, accumulation of ribosomes appears to slow down diffusion of enzymes, noticeable for larger enzyme complexes, while nucleoids provide areas of confined motion for DNA binding proteins, yet acceleration zones for non-DNA-binding proteins. Crowded regions at the cell poles set up zones of higher concentration of the translation machinery, shortening diffusion-distances for rate-limiting translation factor/ribosome interactions, and of metabolic enzymes, possibly speeding up pathways containing low concentrations of metabolites. Thus, heterogeneous diffusion adds another layer of subcellular organization on top of cytoskeletal elements.
The Author(s). Published by S. Karger AG, Basel
Article / Publication Details
留言 (0)