Eosinophil–lymphocyte interactions in the tumor microenvironment and cancer immunotherapy

Jacobsen, E. A. et al. Eosinophil knockout humans: uncovering the role of eosinophils through eosinophil-directed biological therapies. Annu. Rev. Immunol. 39, 719–757 (2021).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Reinbach, G. Ueber das Verhalten der Leukocyten bei malignen Tumoren. Arch. Klin. Chir. Arch. Klin. Chir. 46, 486–562 (1893).

Google Scholar 

Grisaru-Tal, S. et al. Primary tumors from mucosal barrier organs drive unique eosinophil infiltration patterns and clinical associations. Oncoimmunology 10, 1859732 (2020).

PubMed  PubMed Central  Article  Google Scholar 

Grisaru-Tal, S., Itan, M., Klion, A. D. & Munitz, A. A new dawn for eosinophils in the tumour microenvironment. Nat. Rev. Cancer 20, 594–607 (2020).

CAS  PubMed  Article  Google Scholar 

Jacquelot, N., Seillet, C., Vivier, E. & Belz, G. T. Innate lymphoid cells and cancer. Nat. Immunol. 23, 371–379 (2022).

CAS  PubMed  Article  Google Scholar 

Rodriguez-Rodriguez, N., Gogoi, M. & McKenzie, A. N. J. Group 2 innate lymphoid cells: team players in regulating asthma. Annu. Rev. Immunol. 39, 167–198 (2021).

CAS  PubMed  Article  Google Scholar 

Nussbaum, J. C. et al. Type 2 innate lymphoid cells control eosinophil homeostasis. Nature 502, 245–248 (2013).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Maggi, E., Veneziani, I., Moretta, L., Cosmi, L. & Annunziato, F. Group 2 innate lymphoid cells: a double-edged sword in cancer? Cancers 12, 3452 (2020).

CAS  PubMed Central  Article  Google Scholar 

Ikutani, M. et al. Identification of innate IL-5-producing cells and their role in lung eosinophil regulation and antitumor immunity. J. Immunol. 188, 703–713 (2012).

CAS  PubMed  Article  Google Scholar 

Jacquelot, N. et al. Blockade of the co-inhibitory molecule PD-1 unleashes ILC2-dependent antitumor immunity in melanoma. Nat. Immunol. 22, 851–864 (2021).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Dankort, D. et al. BrafV600E cooperates with Pten loss to induce metastatic melanoma. Nat. Genet. 41, 544–552 (2009).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Dougan, M., Dranoff, G. & Dougan, S. K. GM-CSF, IL-3 and IL-5 family of cytokines: regulators of inflammation. Immunity 50, 796–811 (2019).

CAS  PubMed  Article  Google Scholar 

Martin, N. T. & Martin, M. U. Interleukin 33 is a guardian of barriers and a local alarmin. Nat. Immunol. 17, 122–131 (2016).

CAS  PubMed  Article  Google Scholar 

Lucarini, V. et al. IL-33 restricts tumor growth and inhibits pulmonary metastasis in melanoma-bearing mice through eosinophils. Oncoimmunology 6, e1317420 (2017).

PubMed  PubMed Central  Article  Google Scholar 

Gao, K. et al. Transgenic expression of IL-33 activates CD8+ T cells and NK cells and inhibits tumor growth and metastasis in mice. Cancer Lett. 335, 463–471 (2013).

CAS  PubMed  Article  Google Scholar 

Andreone, S. et al. IL-33 promotes CD11b/CD18-mediated adhesion of eosinophils to cancer cells and synapse-polarized degranulation leading to tumor cell killing. Cancers 11, 1664 (2019).

CAS  PubMed Central  Article  Google Scholar 

Brusilovsky, M. et al. Environmental allergens trigger type 2 inflammation through ripoptosome activation. Nat. Immunol. 22, 1316–1326 (2021).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Munitz, A. et al. 2B4 (CD244) is expressed and functional on human eosinophils. J. Immunol. 174, 110–118 (2005).

CAS  PubMed  Article  Google Scholar 

Munitz, A. et al. The inhibitory receptor IRp60 (CD300a) suppresses the effects of IL-5, GM-CSF and eotaxin on human peripheral blood eosinophils. Blood 107, 1996–2003 (2006).

CAS  PubMed  Article  Google Scholar 

Pesce, S. et al. The innate immune cross-talk between NK cells and eosinophils is regulated by the interaction of natural cytotoxicity receptors with eosinophil surface ligands. Front. Immunol. 8, 510 (2017).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Qi, L. et al. Interleukin-33 activates and recruits natural killer cells to inhibit pulmonary metastatic cancer development. Int. J. Cancer 146, 1421–1434 (2020).

CAS  PubMed  Article  Google Scholar 

O’Flaherty, S. M. et al. TLR-stimulated eosinophils mediate recruitment and activation of NK cells in vivo. Scand. J. Immunol. 85, 417–424 (2017).

PubMed  Article  CAS  Google Scholar 

Schuijs, M. J. et al. ILC2-driven innate immune checkpoint mechanism antagonizes NK cell antimetastatic function in the lung. Nat. Immunol. 21, 998–1009 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Waldman, A. D., Fritz, J. M. & Lenardo, M. J. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat. Rev. Immunol. 20, 651–668 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Tay, R. E., Richardson, E. K. & Toh, H. C. Revisiting the role of CD4+ T cells in cancer immunotherapy—new insights into old paradigms. Cancer Gene Ther. 28, 5–17 (2021).

CAS  PubMed  Article  Google Scholar 

Binnewies, M. et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med. 24, 541–550 (2018).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Oh, D. Y. & Fong, L. Cytotoxic CD4+ T cells in cancer: expanding the immune effector toolbox. Immunity 54, 2701–2711 (2021).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Grisaru-Tal, S. et al. Metastasis-entrained eosinophils enhance lymphocyte-mediated antitumor immunity. Cancer Res. 81, 5555–5571 (2021).

CAS  PubMed  Article  Google Scholar 

Mattes, J. et al. Immunotherapy of cytotoxic T cell-resistant tumors by T helper 2 cells: an eotaxin and STAT6-dependent process. J. Exp. Med. 197, 387–393 (2003).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Hung, K. et al. The central role of CD4+ T cells in the antitumor immune response. J. Exp. Med. 188, 2357–2368 (1998).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Reichman, H. et al. Activated eosinophils exert antitumorigenic activities in colorectal cancer. Cancer Immunol. Res. 7, 388–400 (2019).

CAS  PubMed  Article  Google Scholar 

Dolitzky, A. et al. Transcriptional profiling of mouse eosinophils identifies distinct gene signatures following cellular activation. Front. Immunol. 12, 802839 (2021).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Carretero, R. et al. Eosinophils orchestrate cancer rejection by normalizing tumor vessels and enhancing infiltration of CD8+ T cells. Nat. Immunol. 16, 609–617 (2015).

CAS  PubMed  Article  Google Scholar 

Akuthota, P., Wang, H. B., Spencer, L. A. & Weller, P. F. Immunoregulatory roles of eosinophils: a new look at a familiar cell. Clin. Exp. Allergy 38, 1254–1263 (2008).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Munitz, A. et al. CD48 is an allergen and IL-3-induced activation molecule on eosinophils. J. Immunol. 177, 77–83 (2006).

CAS  PubMed  Article  Google Scholar 

Arnold, I. C. et al. Eosinophils suppress TH1 responses and restrict bacterially induced gastrointestinal inflammation. J. Exp. Med. 215, 2055–2072 (2018).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Woerly, G. et al. Expression of CD28 and CD86 by human eosinophils and role in the secretion of type 1 cytokines (interleukin 2 and interferon gamma): inhibition by immunoglobulin a complexes. J. Exp. Med. 190, 487–495 (1999).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Onyema, O. O. et al. Eosinophils downregulate lung alloimmunity by decreasing TCR signal transduction. JCI Insight 4, e128241 (2019).

PubMed Central  Article  Google Scholar 

Lucey, D. R., Nicholson-Weller, A. & Weller, P. F. Mature human eosinophils have the capacity to express HLA-DR. Proc. Natl Acad. Sci. USA 86, 1348–1351 (1989).

留言 (0)

沒有登入
gif