A new NCDs@ZIF-90-based sensor: fluorescent “turn-on” detection of Al3+ ions with high selectivity and sensitivity

Zhan, Z., Jia, Y., Li, D., et al. (2019). A water-stable terbium-MOF sensor for the selective, sensitive, and recyclable detection of Al3+ and CO32− ions. Dalton Transactions, 48, 15255–15262. https://doi.org/10.1039/C9DT03318A

CAS  Article  PubMed  Google Scholar 

Saravanan, A., Shyamsivappan, S., Kalagatur, N. K., Suresh, T., Maroli, N., Bhuvanesh, N., Kolandaivel, P., & Mohan, P. S. (2020). Application of real sample analysis and biosensing: Synthesis of new naphthyl derived chemosensor for detection of Al3+ ions. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy., 241, 118684. https://doi.org/10.1016/j.saa.2020.118684

CAS  Article  Google Scholar 

Wang, Q., Du, X. M., Zhao, B., & Pang, M.-L. (2020). A luminescent MOF as a fluorescent sensor for the sequential detection of Al3+ and phenylpyruvic acid. New Journal of Chemistry., 44, 1307–1312. https://doi.org/10.1039/C9NJ05439A

CAS  Article  Google Scholar 

Wang, W.-D., Li, H., Ding, Z., & Wang, X.-C. (2011). Effects of advanced oxidation pretreatment on residual aluminum control in high humic acid water purification. Journal of Environmental Sciences., 23, 1079–1085. https://doi.org/10.1016/S1001-0742(10)60520-7

CAS  Article  Google Scholar 

Wang, L., Qin, W., Tang, X., et al. (2010). A selective, cell-permeable fluorescent probe for Al3+ in living cells. Organic & Biomolecular Chemistry, 8, 3751–3757. https://doi.org/10.1039/C0OB00123F

CAS  Article  Google Scholar 

Shi, X., Wang, H., Han, T., Feng, X., et al. (2012). A highly sensitive, single selective, real-time and “ turn-on ” fluorescent sensor for Al3+ detection in aqueous media. Journal of Materials Chemistry, 22, 19296–19302. https://doi.org/10.1002/bio.3251

CAS  Article  Google Scholar 

Li, Y., Xu, K., Si, Y., Yang, C., Peng, Q., et al. (2019). An aggregation-induced emission (AIE) fluorescent chemosensor for the detection of Al(III) in aqueous solution. Dyes and Pigments., 171, 107682. https://doi.org/10.1016/j.dyepig.2019.107682

CAS  Article  Google Scholar 

House, E., Esiri, M., Forster, G., et al. (2012). Aluminium, iron and copper in human brain tissues donated to the medical research council’s cognitive function and ageing study. Metallomics, 4, 56–65. https://doi.org/10.1039/C1MT00139F

CAS  Article  PubMed  Google Scholar 

Sargazi, M., Roberts, N. B., & Shenkin, A. (2001). In-vitro studies of aluminium-induced toxicity on kidney proximal tubular cells. Journal of Inorganic Biochemistry., 87, 37–43. https://doi.org/10.1016/S0162-0134(01)00312-9

CAS  Article  PubMed  Google Scholar 

Mirza, A., King, A., Troakes, C., et al. (2017). Aluminium in brain tissue in familial Alzheimer’s disease. Journal of Trace Elements in Medicine and Biology., 40, 30–36. https://doi.org/10.1016/j.jtemb.2016.12.001

CAS  Article  PubMed  Google Scholar 

Zhu, S. Y., & Yan, B. (2018). A novel covalent post-synthetically modified MOF hybrid as a sensitive and selective fluorescent probe for Al3+ detection in aqueous media. Dalton Transactions, 47, 1674–1681. https://doi.org/10.1039/C7DT04266C

CAS  Article  PubMed  Google Scholar 

Pavelkic, V. M., Gopcevic, K. R., Krstic, D. Z., Ilic, M. A., et al. (2008). The influence of Al3+ ion on porcine pepsin activity in vitro. Journal of Enzyme Inhibition and Medicinal Chemistry., 23, 1002–1010. https://doi.org/10.1080/14756360701841095

CAS  Article  PubMed  Google Scholar 

Ma, J. F., Ryan, P. R., & Delhaize, E. (2001). Aluminium tolerance in plants and the complexing role of organic acid. Trends in Plant Science., 6, 273–278. https://doi.org/10.1016/S1360-1385(01)01961-6

CAS  Article  PubMed  Google Scholar 

Matusch, A., Depboylu, C., Palm, C., Wu, B., et al. (2010). Cerebral bioimaging of Cu, Fe, Zn and Mn in the MPTP mouse model of Parkinson’s disease using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Journal of the American Society for Mass Spectrometry, 2, 161–171. https://doi.org/10.1016/j.jasms.2009.09.022

CAS  Article  Google Scholar 

Andersen, J. E. T. (2005). A novel method for the filterless preconcentration of iron. The Analyst, 130, 385–390. https://doi.org/10.1039/B412061B

CAS  Article  PubMed  Google Scholar 

Gillespie, P., Ladame, S., & O’Hare, D. (2019). Molecular methods in electrochemical micro RNA detection. The Analyst, 144, 114–129. https://doi.org/10.1039/C8AN01572D

CAS  Article  Google Scholar 

Rao, H., Liu, W., He, K., et al. (2020). Smartphone-based fluorescence detection of Al3+ and H2O based on the use of dual-emission biomass carbon dots. ACS Sustainable Chemistry & Engineering, 8, 8857–8867. https://doi.org/10.1021/acssuschemeng.0c03354

CAS  Article  Google Scholar 

Liu, Y. J., Tian, F. F., Fan, X. Y., et al. (2017). Fabrication of an acylhydrazone based fluorescence probe for Al3+. Sensors and Actuators B., 240, 916–925. https://doi.org/10.1016/j.snb.2016.09.051

CAS  Article  Google Scholar 

Wang, P., Liu, J. H., Gao, H., et al. (2017). Host–guest carbon dots as high-performance fluorescence probes. Journal of Materials Chemistry C, 5, 6328–6335. https://doi.org/10.1039/C7TC01574G

CAS  Article  Google Scholar 

Han, Z., Nan, D., Yang, H., et al. (2019). Carbon quantum dots based ratiometric fluorescence probe for sensitive and selective detection of Cu2+ and glutathione. Sensors & Actuators: B Chemical., 298, 126842. https://doi.org/10.1016/j.snb.2019.126842

CAS  Article  Google Scholar 

Luo, L., Wang, P., Wang, Y., et al. (2019). pH assisted selective detection of Hg(II) and Ag(I) based on nitrogen-rich carbon dots. Sensors & Actuators: B. Chemical., 273, 1640–1647. https://doi.org/10.1016/j.snb.2018.07.090

CAS  Article  Google Scholar 

Feng, J., Zhao, X., Bian, W., et al. (2019). Microwave-assisted synthesis of nitrogen-rich carbon dots as effective fluorescent probes for sensitive detection of Ag+. Materials Chemistry Frontiers., 3, 2751–2758. https://doi.org/10.1039/C9QM00624A

CAS  Article  Google Scholar 

Yang, J., Ruan, B., Ye, Q., Tsai, L. C., et al. (2022). Carbon dots-embedded zinc-based metal-organic framework as a dual-emitting platform for metal cation. Microporous and Mesoporous Materials., 331, 111630. https://doi.org/10.1016/j.micromeso.2021.111630

CAS  Article  Google Scholar 

Jiao, L., Seow, J. Y. R., Skinner, W. S., Wang, Z. Y. U., & Jiang, H. L. (2019). Metal–organic frameworks: Structures and functional applications. Materials Today., 27, 43–68. https://doi.org/10.1016/j.mattod.2018.10.038

CAS  Article  Google Scholar 

Wu, M. X., & Yang, Y. W. (2017). Metal-organic framework (MOF)-based drug/cargo delivery and cancer therapy. Advanced Materials, 29, 1606134. https://doi.org/10.1002/adma.201606134

CAS  Article  Google Scholar 

Avci, G., Erucar, I., & Keskin, S. (2020). Do new MOFs perform better for CO2 capture and H2 purification? Computational screening of the updated MOF database. ACS Applied Materials & Interfaces, 12, 41567–41579. https://doi.org/10.1021/acsami.0c12330

CAS  Article  Google Scholar 

Cao, J., Zaremba, O. T., Lei, Q., et al. (2021). Artificial bioaugmentation of biomacromolecules and living organisms for biomedical applications. ACS Nano, 15, 3900–3926. https://doi.org/10.1021/acsnano.0c10144

CAS  Article  PubMed  Google Scholar 

Fu, J., Zhou, S., Zhao, P., Wu, X., Tang, S., Chen, S., Yang, Z., & Zhang, Z. (2022). A dual-response ratiometric fluorescence imprinted sensor based on metal-organic frameworks for ultrasensitive visual detection of 4-nitrophenol in environments. Biosensors and Bioelectronics., 198, 113848. https://doi.org/10.1016/j.bios.2021.113848

CAS  Article  PubMed  Google Scholar 

Jin, H., Zong, W., Yuan, L., & Zhang, X. (2018). Nanoscale zeolitic imidazole framework-90: selective, sensitive and dual-excitation ratiometric fluorescent detection of hazardous Cr(VI) anions in aqueous media. New Journal of Chemistry, 42, 12549–12556. https://doi.org/10.1039/C8NJ02047G

CAS  Article  Google Scholar 

Li, Y. P., Jiang, K., Zhang, J., & Xia, T. F. (2018). A turn-on fluorescence probe based on post-modified metal–organic frameworks for highly selective and fast-response hypochlorite detection. Polyhedron, 148, 76–80. https://doi.org/10.1016/j.poly.2018.04.001

CAS  Article  Google Scholar 

Feng, S., Pei, F., Wu, Y., et al. (2021). A ratiometric fluorescent sensor based on g-CNQDs@Zn-MOF for the sensitive detection of riboflavin via FRET. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy., 246, 119004. https://doi.org/10.1016/j.saa.2020.119004

CAS  Article  Google Scholar 

Sun, X., Yang, S., Guo, M., et al. (2017). Reversible fluorescence probe based on N-doped carbon dots for the determination of Mercury Ion and glutathione in waters and living cells. Analytical Sciences., 33, 761–767. https://doi.org/10.2116/analsci.33.761

CAS  Article  PubMed  Google Scholar 

Deng, J., Wang, K., Wang, M., et al. (2017). Mitochondria targeted nanoscale zeolitic imidazole framework-90 for ATP imaging in live cells. Journal of the American Chemical Society, 139, 5877–5882. https://doi.org/10.1021/jacs.7b01229

CAS  Article  PubMed  Google Scholar 

Xia, C., Cao, M., Xia, J., et al. (2019). An ultrafast responsive and sensitive ratiometric fluorescent pH nanoprobe based on label-free dual-emission carbon dots. Journal of Materials Chemistry C., 7, 2563–2569. https://doi.org/10.1039/C8TC05693E

CAS  Article  Google Scholar 

Morris, W., Doonan, C.-J., Furukawa, H., et al. (2008). Crystals as molecules: Postsynthesis covalent functionalization of zeolitic imidazolate frameworks. Journal of the American Chemical Society, 130, 12626–12627. https://doi.org/10.1021/ja805222x

CAS  Article  PubMed  Google Scholar 

Wu, Z., Yang, H., Pan, S., et al. (2020). Fluorescence-scattering dual-signal response of carbon dots@ZIF-90 for phosphate ratiometric detection. ACS Sensors., 5, 2211–2220. https://doi.org/10.1021/acssensors.0c00853

CAS  Article  PubMed  Google Scholar 

Jiang, Z., Wang, Y., Sun, L., et al. (2019). Dual ATP and pH responsive ZIF-90 nanosystem with favorable biocompatibility and facile post-modification improves therapeutic outcomes of triple negative breast cancer in vivo. Biomaterials, 197, 41–50. https://doi.org/10.1016/j.biomaterials.2019.01.001

CAS  Article  PubMed  Google Scholar 

Bera, M. K., Behera, L., & Mohapatra, S. (2021). A fluorescence turn-down-up detection of Cu2+ and pesticide quinalphos using carbon quantum dot integrated UiO-66-NH2. Colloids and Surfaces A: Physicochemical and Engineering Aspects., 624, 126792. https://doi.org/10.1016/j.colsurfa.2021.126792

CAS  Article 

留言 (0)

沒有登入
gif