Propylene glycol, a component of electronic cigarette liquid, damages epithelial cells in human small airways

Grana R, Benowitz N, Glantz SA. E-cigarettes: a scientific review. Circulation. 2014;129:1972–86. https://doi.org/10.1161/CIRCULATIONAHA.114.007667.

Article  PubMed  PubMed Central  Google Scholar 

Goniewicz ML, Knysak J, Gawron M, Kosmider L, Sobczak A, Kurek J, et al. Levels of selected carcinogens and toxicants in vapour from electronic cigarettes. Tob Control. 2014;23:133–9. https://doi.org/10.1136/tobaccocontrol-2012-050859.

Article  PubMed  Google Scholar 

Shahab L, Goniewicz ML, Blount BC, Brown J, McNeill A, Alwis KU, et al. Nicotine, carcinogen, and toxin exposure in long-term E-cigarette and nicotine replacement therapy users: a cross-sectional study. Ann Intern Med. 2017;166:390–400. https://doi.org/10.7326/M16-1107.

Article  PubMed  PubMed Central  Google Scholar 

Patnode CD, Henderson JT, Coppola EL, Melnikow J, Durbin S, Thomas RG. Interventions for tobacco cessation in adults, including pregnant persons: updated evidence report and systematic review for the US Preventive Services Task Force. JAMA. 2021;325:280–98. https://doi.org/10.1001/jama.2020.23541.

Article  PubMed  Google Scholar 

Grabovac I, Oberndorfer M, Fischer J, Wiesinger W, Haider S, Dorner TE. Effectiveness of electronic cigarettes in Smoking Cessation: a systematic review and meta-analysis. Nicotine Tob Res. 2021;23:625–34. https://doi.org/10.1093/ntr/ntaa181.

CAS  Article  PubMed  Google Scholar 

Kruse GR, Kalkhoran S, Rigotti NA. Use of electronic cigarettes among U.S. Adults with medical comorbidities. Am J Prev Med. 2017;52:798–804. https://doi.org/10.1016/j.amepre.2016.12.004.

Article  PubMed  PubMed Central  Google Scholar 

Soneji S, Barrington-Trimis JL, Wills TA, Leventhal AM, Unger JB, Gibson LA, et al. Association between initial use of e-cigarettes and subsequent cigarette smoking among adolescents and young adults: a systematic review and meta-analysis. JAMA Pediatr. 2017;171:788–97. https://doi.org/10.1001/jamapediatrics.2017.1488.

Article  PubMed  PubMed Central  Google Scholar 

Bold KW, Kong G, Camenga DR, Simon P, Cavallo DA, Morean ME, et al. Trajectories of E-cigarette and conventional cigarette use among youth. Pediatrics. 2018;141: e20171832. https://doi.org/10.1542/peds.2017-1832.

Article  PubMed  Google Scholar 

Barrington-Trimis JL, Kong G, Leventhal AM, Liu F, Mayer M, Cruz TB, et al. E-cigarette use and subsequent smoking frequency among adolescents. Pediatrics. 2018. https://doi.org/10.1542/peds.2018-0486.

Article  PubMed  Google Scholar 

Aleyan S, Cole A, Qian W, Leatherdale ST. Risky business: a longitudinal study examining cigarette smoking initiation among susceptible and non-susceptible e-cigarette users in Canada. BMJ. 2018;8:e021080. https://doi.org/10.1136/bmjopen-2017-021080.

Article  Google Scholar 

Layden JE, Ghinai I, Pray I, Kimball A, Layer M, Tenforde MW, et al. Pulmonary illness related to E-cigarette use in Illinois and Wisconsin—final report. N Engl J Med. 2020;382:903–16. https://doi.org/10.1056/NEJMoa1911614.

Article  PubMed  Google Scholar 

Outbreak of lung injury associated with the use of E-cigarette, or Vaping, products. https://www.cdc.gov/tobacco/basic_information/e-cigarettes/severe-lung-disease.html.

Blount BC, Karwowski MP, Shields PG, Morel-Espinosa M, Valentin-Blasini L, Gardner M, et al. Vitamin E acetate in bronchoalveolar-lavage fluid associated with EVALI. N Engl J Med. 2020;382:697–705. https://doi.org/10.1056/NEJMoa1916433.

CAS  Article  PubMed  Google Scholar 

Belok SH, Parikh R, Bernardo J, Kathuria H. E-cigarette, or vaping, product use-associated lung injury: a review. Pneumonia (Nathan). 2020;12:12. https://doi.org/10.1186/s41479-020-00075-2.

Article  Google Scholar 

Garcia-Arcos I, Geraghty P, Baumlin N, Campos M, Dabo AJ, Jundi B, et al. Chronic electronic cigarette exposure in mice induces features of COPD in a nicotine-dependent manner. Thorax. 2016;71:1119–29. https://doi.org/10.1136/thoraxjnl-2015-208039.

Article  PubMed  Google Scholar 

Madison MC, Landers CT, Gu BH, Chang CY, Tung HY, You R, et al. Electronic cigarettes disrupt lung lipid homeostasis and innate immunity independent of nicotine. J Clin Invest. 2019;129:4290–304. https://doi.org/10.1172/JCI128531.

Article  PubMed  PubMed Central  Google Scholar 

Ghosh A, Coakley RD, Ghio AJ, Muhlebach MS, Esther CR, Alexis NE, et al. Chronic E-cigarette use increases neutrophil elastase and matrix metalloprotease levels in the lung. Am J Respir Crit Care Med. 2019;200:1392–401. https://doi.org/10.1164/rccm.201903-0615OC.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Conklin DJ, Ogunwale MA, Chen Y, Theis WS, Nantz MH, Fu XA, et al. Electronic cigarette-generated aldehydes: the contribution of e-liquid components to their formation and the use of urinary aldehyde metabolites as biomarkers of exposure. Aerosol Sci Technol. 2018;52:1219–32. https://doi.org/10.1080/02786826.2018.1500013.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Ghosh A, Coakley RC, Mascenik T, Rowell TR, Davis ES, Rogers K, et al. Chronic E-cigarette exposure alters the human bronchial epithelial proteome. Am J Respir Crit Care Med. 2018;198:67–76. https://doi.org/10.1164/rccm.201710-2033OC.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Rowell TR, Reeber SL, Lee SL, Harris RA, Nethery RC, Herring AH, et al. Flavored e-cigarette liquids reduce proliferation and viability in the CALU3 airway epithelial cell line. Am J Physiol Lung Cell Mol Physiol. 2017;313:L52–66. https://doi.org/10.1152/ajplung.00392.2016.

Article  PubMed  PubMed Central  Google Scholar 

Herr C, Tsitouras K, Niederstraßer J, Backes C, Beisswenger C, Dong L, et al. Cigarette smoke and electronic cigarettes differentially activate bronchial epithelial cells. Respir Res. 2020;21:67. https://doi.org/10.1186/s12931-020-1317-2.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Weinberg WC, Denning MF. P21WAF1 control of epithelial cell cycle and cell fate. Crit Rev Oral Biol Med. 2002;13:453–64. https://doi.org/10.1177/154411130201300603.

Article  PubMed  Google Scholar 

Geiss O, Bianchi I, Barahona F, Barrero-Moreno J. Characterisation of mainstream and passive vapours emitted by selected electronic cigarettes. Int J Hyg Environ Health. 2015;218:169–80. https://doi.org/10.1016/j.ijheh.2014.10.001.

CAS  Article  PubMed  Google Scholar 

Smith TT, Heckman BW, Wahlquist AE, Cummings KM, Carpenter MJ. The impact of E-liquid propylene glycol and vegetable glycerin ratio on ratings of subjective effects, reinforcement value, and use in current smokers. Nicotine Tob Res. 2020;22:791–7. https://doi.org/10.1093/ntr/ntz130.

CAS  Article  PubMed  Google Scholar 

Harvanko A, Kryscio R, Martin C, Kelly T. Stimulus effects of propylene glycol and vegetable glycerin in electronic cigarette liquids. Drug Alcohol Depend. 2019;194:326–9. https://doi.org/10.1016/j.drugalcdep.2018.08.039.

CAS  Article  PubMed  Google Scholar 

Sassano MF, Davis ES, Keating JE, Zorn BT, Kochar TK, Wolfgang MC, et al. Evaluation of e-liquid toxicity using an open-source high-throughput screening assay. PLOS Biol. 2018;16: e2003904. https://doi.org/10.1371/journal.pbio.2003904.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Scheffler S, Dieken H, Krischenowski O, Förster C, Branscheid D, Aufderheide M. Evaluation of E-cigarette liquid vapor and mainstream cigarette smoke after direct exposure of primary human bronchial epithelial cells. Int J Environ Res Public Health. 2015;12:3915–25. https://doi.org/10.3390/ijerph120403915.

CAS  Article  PubMed  PubMed Central  Google Scholar 

O’Brien PJ, Siraki AG, Shangari N. Aldehyde sources, metabolism, molecular toxicity mechanisms, and possible effects on human health. Crit Rev Toxicol. 2005;35:609–62. https://doi.org/10.1080/10408440591002183.

CAS  Article  PubMed  Google Scholar 

Baskoro H, Sato T, Karasutani K, Suzuki Y, Mitsui A, Arano N, et al. Regional heterogeneity in response of airway epithelial cells to cigarette smoke. BMC Pulm Med. 2018;18:148. https://doi.org/10.1186/s12890-018-0715-4.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Mah LJ, El-Osta A, Karagiannis TC. γH2AX: a sensitive molecular marker of DNA damage and repair. Leukemia. 2010;24:679–86. https://doi.org/10.1038/leu.2010.6.

CAS  Article  PubMed  Google Scholar 

Dasika GK, Lin SC, Zhao S, Sung P, Tomkinson A, Lee EYHP. DNA damage-induced cell cycle checkpoints and DNA strand break repair in development and tumorigenesis. Oncogene. 1999;18:7883–99. https://doi.org/10.1038/sj.onc.1203283.

CAS  Article  PubMed  Google Scholar 

Norbury CJ, Zhivotovsky B. DNA damage-induced apoptosis. Oncogene. 2004;23:2797–808. https://doi.org/10.1038/sj.onc.1207532.

CAS  Article  PubMed  Google Scholar 

Agarwal A, Mahfouz RZ, Sharma RK, Sarkar O, Mangrola D, Mathur PP. Potential biological role of poly (ADP-ribose) polymerase (PARP) in male gametes. Reprod Biol Endocrinol. 2009;7:143. https://doi.org/10.1186/1477-7827-7-143.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Scott A, Lugg ST, Aldridge K, Lewis KE, Bowden A, Mahida RY, et al. Pro-inflammatory effects of e-cigarette vapour condensate on human alveolar macrophages. Thorax. 2018;73:1161–9. https://doi.org/10.1136/thoraxjnl-2018-211663.

Article  PubMed  Google Scholar 

Hedström U, Hallgren O, Öberg L, Demicco A, Vaarala O, Westergren-Thorsson G, et al. Bronchial extracellular matrix from COPD patients induces altered gene expression in repopulated primary human bronchial epithelial cells. Sci Rep. 2018;8:3502. https://doi.org/10.1038/s41598-018-21727-w.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Perotin JM, Adam D, Vella-Boucaud J, Delepine G, Sandu S, Jonvel AC, et al. Delay of airway epithelial wound repair in COPD is associated with airflow obstruction severity. Respir Res. 2014;15:151. https://doi.org/10.1186/s12931-014-0151-9.

Article  PubMed 

留言 (0)

沒有登入
gif