Chitinolytic enzymes contribute to the pathogenicity of Aliivibrio salmonicida LFI1238 in the invasive phase of cold-water vibriosis

Egidius E, Wiik R, Andersen K, Hoff KA, Hjeltnes B. Vibrio salmonicida Sp-Nov, a new fish pathogen. Int J Syst Bacteriol. 1986;36(4):518–20. https://doi.org/10.1099/00207713-36-4-518.

Article  Google Scholar 

Schrøder MB, Espelid S, Jørgensen TØ. Two serotype of Vibrio salmonicida isolated from diseased cod (Gadus morhua L.); virulence, immunological studies and advanced experiments. Fish Shellfish Immunol. 1992;2:211–21. https://doi.org/10.1016/s1050-4648(05)80060-9.

Article  Google Scholar 

Egidius E, Andersen K, Clausen E, Raa J. Cold-water vibriosis or ‘Hitra disease’ in Norwegian salmonid farming. J Fish Dis. 1981;4(4):353–4. https://doi.org/10.1111/j.1365-2761.1981.tb01143.x.

Article  Google Scholar 

Poppe TT, Håstein T, Salte R. “Hitra Disease” (Haemorrhagic Syndrome) in Norwegian Salmon Farming: Present Status. In: Fish Shellfish Pathol. 1985.

Google Scholar 

Kashulin A, Sørum H. A novel in vivo model for rapid evaluation of Aliivibrio salmonicida infectivity in Atlantic salmon. Aquaculture. 2014;420–421:112–8. https://doi.org/10.1016/j.aquaculture.2013.10.025.

Article  Google Scholar 

Totland GK, Nylund A, Holm KO. An ultrastructural study of morphological changes in Atlantic salmon, Salmo salar L., during the development of cold water vibriosis. J Fish Dis. 1988;11(1):1–13. https://doi.org/10.1111/j.1365-2761.1988.tb00518.x.

Article  Google Scholar 

Bjelland AM, Johansen R, Brudal E, Hansen H, Winther-Larsen HC, Sørum H. Vibrio salmonicida pathogenesis analyzed by experimental challenge of Atlantic salmon (Salmo salar). Microb Pathog. 2012;52(1):77–84. https://doi.org/10.1016/j.micpath.2011.10.007.

Article  PubMed  Google Scholar 

Bjelland A, Fauske AK, Nguyen A, Orlien I, Østgaard I, Sørum H. Expression of Vibrio salmonicida virulence genes and immune response parameters in experimentally challenged Atlantic salmon (Salmo salar L.). Front Microbiol. 2013;4:401. https://doi.org/10.3389/fmicb.2013.00401.

Article  PubMed  PubMed Central  Google Scholar 

Bjelland AM, Sørum H, Tegegne DA, Winther-Larsen HC, Willassen NP, Hansen H. LitR of Vibrio salmonicida is a salinity-sensitive quorum-sensing regulator of phenotypes involved in host interactions and virulence. Infect Immun. 2012;80(5):1681–9. https://doi.org/10.1128/iai.06038-11.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Nørstebo SF, Lotherington L, Landsverk M, Bjelland AM, Sørum H. Aliivibrio salmonicida requires O-antigen for virulence in Atlantic salmon (Salmo salar L). Microb Pathog. 2018;124:322–31. https://doi.org/10.1016/j.micpath.2018.08.058.

CAS  Article  PubMed  Google Scholar 

Nørstebo SF, Paulshus E, Bjelland AM, Sørum H. A unique role of flagellar function in Aliivibrio salmonicida pathogenicity not related to bacterial motility in aquatic environments. Microb Pathog. 2017;109:263–73. https://doi.org/10.1016/j.micpath.2017.06.008.

CAS  Article  PubMed  Google Scholar 

Nelson EJ, Tunsjø HS, Fidopiastis PM, Sørum H, Ruby EG. A novel lux operon in the cryptically bioluminescent fish pathogen Vibrio salmonicida is associated with virulence. Appl Environ Microbiol. 2007;73(6):1825–33. https://doi.org/10.1128/aem.02255-06.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Lombard V, GolacondaRamulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014;42((Database issue)):D490-5. https://doi.org/10.1093/nar/gkt1178.

CAS  Article  PubMed  Google Scholar 

Zhou X, Zhu H. Current understanding of substrate specificity and regioselectivity of LPMOs. Bioresour. 2020;7(1):11. https://doi.org/10.1186/s40643-020-0300-6.

Article  Google Scholar 

Eijsink VGH, Petrovic D, Forsberg Z, Mekasha S, Røhr ÅK, Várnai A, et al. On the functional characterization of lytic polysaccharide monooxygenases (LPMOs). Biotechnol Biofuels. 2019;12(1):58. https://doi.org/10.1186/s13068-019-1392-0.

Article  PubMed  PubMed Central  Google Scholar 

Oyeleye A, Normi YM. Chitinase: diversity, limitations, and trends in engineering for suitable applications. Biosci Rep. 2018;38(4):BSR2018032300. https://doi.org/10.1042/BSR20180323.

Article  PubMed  PubMed Central  Google Scholar 

Nakagawa YS, Kudo M, Loose JS, Ishikawa T, Totani K, Eijsink VGH, et al. A small lytic polysaccharide monooxygenase from Streptomyces griseus targeting alpha- and beta-chitin. FEBS J. 2015;282(6):1065–79. https://doi.org/10.1111/febs.13203.

CAS  Article  PubMed  Google Scholar 

Vaaje-Kolstad G, Westereng B, Horn SJ, Liu Z, Zhai H, Sørlie M, et al. An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science. 2010;330(6001):219–22. https://doi.org/10.1126/science.1192231.

CAS  Article  PubMed  Google Scholar 

Bissaro B, Røhr ÅK, Müller G, Chylenski P, Skaugen M, Forsberg Z, et al. Oxidative cleavage of polysaccharides by monocopper enzymes depends on H2O2. Nat Chem Biol. 2017;13(10):1123–8. https://doi.org/10.1038/nchembio.2470.

CAS  Article  PubMed  Google Scholar 

Forsberg Z, Nelson CE, Dalhus B, Mekasha S, Loose JSM, Crouch LI, et al. Structural and functional analysis of a lytic polysaccharide monooxygenase important for efficient utilization of chitin in Cellvibrio japonicus. J Biol Chem. 2016;291(14):7300–12. https://doi.org/10.1074/jbc.M115.700161.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Vaaje-Kolstad G, Horn SJ, van Aalten DM, Synstad B, Eijsink VGH. The non-catalytic chitin-binding protein CBP21 from Serratia marcescens is essential for chitin degradation. J Biol Chem. 2005;280(31):28492–7. https://doi.org/10.1074/jbc.M504468200.

CAS  Article  PubMed  Google Scholar 

Frederiksen RF, Paspaliari DK, Larsen T, Storgaard BG, Larsen MH, Ingmer H, et al. Bacterial chitinases and chitin-binding proteins as virulence factors. Microbiology (Reading, England). 2013;159(Pt 5):833–47. https://doi.org/10.1099/mic.0.051839-0.

CAS  Article  Google Scholar 

Wong E, Vaaje-Kolstad G, Ghosh A, Hurtado-Guerrero R, Konarev PV, Ibrahim AFM, et al. The Vibrio cholerae colonization factor GbpA possesses a modular structure that governs binding to different host surfaces. PLoS Pathog. 2012;8(1):e1002373-e. https://doi.org/10.1371/journal.ppat.1002373.

CAS  Article  Google Scholar 

Kirn TJ, Jude BA, Taylor RK. A colonization factor links Vibrio cholerae environmental survival and human infection. Nature. 2005;438(7069):863–6. https://doi.org/10.1038/nature04249.

CAS  Article  PubMed  Google Scholar 

Chaudhuri S, Bruno JC, Alonzo F 3rd, Xayarath B, Cianciotto NP, Freitag NE. Contribution of chitinases to Listeria monocytogenes pathogenesis. Appl Environ Microbiol. 2010;76(21):7302–5. https://doi.org/10.1128/AEM.01338-10.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Dishaw LJ, Giacomelli S, Melillo D, Zucchetti I, Haire RN, Natale L, et al. A role for variable region-containing chitin-binding proteins (VCBPs) in host gut–bacteria interactions. PNAS. 2011;108(40):16747–52. https://doi.org/10.1073/pnas.1109687108.

Article  PubMed  PubMed Central  Google Scholar 

Mondal M, Nag D, Koley H, Saha DR, Chatterjee NS. The Vibrio cholerae extracellular chitinase ChiA2 is important for survival and pathogenesis in the host intestine. PLoS ONE. 2014;9(9):e103119. https://doi.org/10.1371/journal.pone.0103119.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Agostoni M, Hangasky JA, Marletta MA. Physiological and molecular understanding of bacterial polysaccharide monooxygenases. Microbiol Mol Biol Rev. 2017;81(3):e00015-17. https://doi.org/10.1128/MMBR.00015-17.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Lee CG, Silva CAD, Cruz CSD, Ahangari F, Ma B, Kang M-J, et al. Role of chitin and chitinase/chitinase-like proteins in inflammation, tissue remodeling, and injury. Annu Rev Physiol. 2011;73(1):479–501. https://doi.org/10.1146/annurev-physiol-012110-142250.

CAS  Article  PubMed  Google Scholar 

Vandhana TM, Reyre JL, Sushmaa D, Berrin JG, Bissaro B, Madhuprakash J. On the expansion of biological functions of lytic polysaccharide monooxygenases. New Phytol. 2021. https://doi.org/10.1111/nph.17921.

Article  Google Scholar 

Askarian F, Uchiyama S, Masson H, Sørensen HV, Golten O, Bunæs AC, et al. The lytic polysaccharide monooxygenase CbpD promotes Pseudomonas aeruginosa virulence in systemic infection. Nat Commun. 2021;12(1):1230. https://doi.org/10.1038/s41467-021-21473-0.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Bhowmick R, Ghosal A, Das B, Koley H, Saha DR, Ganguly S, et al. Intestinal adherence of Vibrio cholerae involves a coordinated interaction between colonization factor GbpA and mucin. Infect Immun. 2008;76(11):4968–77. https://doi.org/10.1128/IAI.01615-07.

CAS  Article  PubMed  PubMed Central  Google Scholar 

DebRoy S, Dao J, Söderberg M, Rossier O, Cianciotto NP. Legionella pneumophila type II secretome reveals unique exoproteins and a chitinase that promotes bacterial persistence in the lung. PNAS. 2006;103(50):19146–51. https://doi.org/10.1073/pnas.0608279103.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Rehman S, Grigoryeva LS, Richardson KH, Corsini P, White RC, Shaw R, et al. Structure and functional analysis of the Legionella pneumophila chitinase ChiA reveals a novel mechanism of metal-dependent mucin degradation. PLoS Pathog. 2020;16(5):e1008342. https://doi.org/10.1371/journal.ppat.1008342.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Skåne A, Minniti G, Loose JSM, Mekasha S, Bissaro B, Mathiesen G, et al. The fish pathogen Aliivibrio salmonicida LFI1238 can degrade and metabolize chitin despite gene disruption in the chitinolytic pathway. Appl Environ Microbiol. 2021;87(19):e0052921. https://doi.org/10.1128/AEM.00529-21.

Article  PubMed  Google Scholar 

Hjerde E, Lorentzen MS, Holden MT, Seeger K, Paulsen S, Bason N, et al. The genome sequence of the fish pathogen Aliivibrio salmonicida strain LFI1238 shows extensive evidence of gene decay. BMC Genomics. 2008;9(1):616. https://doi.org/10.1186/1471-2164-9-616.

CAS  Article  PubMed  Pub

留言 (0)

沒有登入
gif