aCandiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
bDepartment of Medical Sciences, University of Turin, Turin, Italy
cADDAX Biosciences srl., Turin, Italy
dDepartment of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
Log in to MyKarger to check if you already have access to this content.
Buy FullText & PDF Unlimited re-access via MyKarger Unrestricted printing, no saving restrictions for personal use read more
CHF 38.00 *
EUR 35.00 *
USD 39.00 *
Buy a Karger Article Bundle (KAB) and profit from a discount!
If you would like to redeem your KAB credit, please log in.
Save over 20% compared to the individual article price. Access via DeepDyve Unlimited fulltext viewing Of this article Organize, annotate And mark up articles Printing And downloading restrictions apply Subscribe Access to all articles of the subscribed year(s) guaranteed for 5 years Unlimited re-access via Subscriber Login or MyKarger Unrestricted printing, no saving restrictions for personal use read more Select* The final prices may differ from the prices shown due to specifics of VAT rules.
Article / Publication DetailsFirst-Page Preview
Received: April 11, 2022
Accepted: June 10, 2022
Published online: July 20, 2022
Number of Print Pages: 11
Number of Figures: 4
Number of Tables: 0
ISSN: 1015-2008 (Print)
eISSN: 1423-0291 (Online)
For additional information: https://www.karger.com/PAT
AbstractIntroduction: Optimization of pre-analytic procedures and tissue processing is a basic requirement for reliable and reproducible data to be obtained. Tissue fixation in formalin represents the extensively favored method for surgical tissue specimen processing in diagnostic pathology; however, formalin fixation exerts a blasting effect on DNA and RNA. Methods: A formic acid-deprived formaldehyde solution was prepared by removing acids with an ion-exchange basic resin and the concentrated, acid-deprived formaldehyde (ADF) solution was employed to prepare a 4% ADF solution in 0.1 M phosphate buffer, pH 7.2–7.4. Human (n = 27) and mouse (n = 20) tissues were fixed in parallel and similar conditions in either ADF or neutral buffered formalin (NBF). DNAs and RNAs were extracted, and fragmentation analyses were performed. Results: Besides no significant differences in terms of extraction yield and absorbance ratio, ADF fixation reduced DNA fragmentation, i.e., the largest fragments (>5,000 bp) were significantly more prevalent in the DNAs purified from ADF-fixed tissues (p < 0.001 in both cohorts). Moreover, we observed that DNA preservation is more stable in ADF-fixed tissue compared to NBF-fixed tissues. Conclusion: Although DNA fragmentation in FFPE tissues is a multifactor process, we showed that the removal of formic acid is responsible for a significant improvement in DNA preservation.
© 2022 S. Karger AG, Basel
References Chung JY, Braunschweig T, Williams R, Guerrero N, Hoffmann KM, Kwon M, et al. Factors in tissue handling and processing that impact RNA obtained from formalin-fixed, paraffin-embedded tissue. J Histochem Cytochem. 2008 Nov;56(11):1033–42. Gundisch S, Annaratone L, Beese C, Drecol E, Marchio C, Quaglino E, et al. Critical roles of specimen type and temperature before and during fixation in the detection of phosphoproteins in breast cancer tissues. Lab Invest. 2015 May;95(5):561–71. Hedegaard J, Thorsen K, Lund MK, Hein AMK, Hamilton-Dutoit SJ, Vang S, et al. Next-generation sequencing of RNA and DNA isolated from paired fresh-frozen and formalin-fixed paraffin-embedded samples of human cancer and normal tissue. PLoS One. 2014;9(5):e98187. Didelot A, Kotsopoulos SK, Lupo A, Pekin D, Li X, Atochin I, et al. Multiplex picoliter-droplet digital PCR for quantitative assessment of DNA integrity in clinical samples. Clin Chem. 2013 May;59(5):815–23. Kaneko Y, Kuramochi H, Nakajima G, Inoue Y, Yamamoto M. Degraded DNA may induce discordance of KRAS status between primary colorectal cancer and corresponding liver metastases. Int J Clin Oncol. 2014 Feb;19(1):113–20. Endrullat C, Glokler J, Franke P, Frohme M. Standardization and quality management in next-generation sequencing. Appl Transl Genom. 2016 Sep;10:2–9. Groelz D, Sobin L, Branton P, Compton C, Wyrich R, Rainen L. Non-formalin fixative versus formalin-fixed tissue: a comparison of histology and RNA quality. Exp Mol Pathol. 2013 Feb;94(1):188–94. Southwood M, Krenz T, Cant N, Maurya M, Gazdova J, Maxwell P, et al. Systematic evaluation of PAXgene® tissue fixation for the histopathological and molecular study of lung cancer. J Pathol Clin Res. 2020 Jan;6(1):40–54. Guyard A, Boyez A, Pujals A, Robe C, Tran Van Nhieu J, Allory Y, et al. DNA degrades during storage in formalin-fixed and paraffin-embedded tissue blocks. Virchows Arch. 2017 Oct;471(4):491–500. Berrino E, Annaratone L, Miglio U, Maldi E, Piccinelli C, Peano E, et al. Cold formalin fixation guarantees DNA integrity in formalin fixed paraffin embedded tissues: premises for a better quality of diagnostic and experimental pathology with a specific impact on breast cancer. Front Oncol. 2020;10:173. Vendrell JA, Grand D, Rouquette I, Costes V, Icher S, Selves J, et al. High-throughput detection of clinically targetable alterations using next-generation sequencing. Oncotarget. 2017 Jun 20;8(25):40345–58. Cukier HN, Pericak-Vance MA, Gilbert JR, Hedges DJ. Sample degradation leads to false-positive copy number variation calls in multiplex real-time polymerase chain reaction assays. Anal Biochem. 2009 Mar 15;386(2):288–90. Bettoni F, Koyama FC, de Avelar Carpinetti P, Galante PAF, Camargo AA, Asprino PF. A straightforward assay to evaluate DNA integrity and optimize next-generation sequencing for clinical diagnosis in oncology. Exp Mol Pathol. 2017 Dec;103(3):294–9. Koshiba T, Matsuyama H. An in vitro system of indole-3-acetic acid formation from tryptophan in maize (Zea mays) coleoptile extracts. Plant Physiol. 1993 Aug;102(4):1319–24. Srinivasan M, Sedmak D, Jewell S. Effect of fixatives and tissue processing on the content and integrity of nucleic acids. Am J Pathol. 2002 Dec;161(6):1961–71. Amemiya K, Hirotsu Y, Oyama T, Omata M. Relationship between formalin reagent and success rate of targeted sequencing analysis using formalin fixed paraffin embedded tissues. Clinica Chimica Acta. 2019 Jan;488:129–34. Fox CH, Johnson FB, Whiting J, Roller PP. Formaldehyde fixation. J Histochem Cytochem. 1985 Aug;33(8):845–53. Lanzardo S, Conti L, Rooke R, Ruiu R, Accart N, Bolli E, et al. Immunotargeting of antigen xCT attenuates stem-like cell behavior and metastatic progression in breast cancer. Cancer Res. 2016 Jan 1;76(1):62–72. Berrino E, Bragoni A, Annaratone L, Fenocchio E, Carnevale-Schianca F, Garetto L, et al. Pursuit of gene fusions in daily practice: evidence from real-world data in wild-type and microsatellite instable patients. Cancers. 2021 Jul 5;13(13):3376. Al-Kateb H, Nguyen TT, Steger-May K, Pfeifer JD. Identification of major factors associated with failed clinical molecular oncology testing performed by next generation sequencing (NGS). Mol Oncol. 2015 Nov;9(9):1737–43. Kuwata T, Wakabayashi M, Hatanaka Y, Morii E, Oda Y, Taguchi K, et al. Impact of DNA integrity on the success rate of tissue-based next-generation sequencing: lessons from nationwide cancer genome screening project SCRUM-Japan GI-SCREEN. Pathol Int. 2020 Dec;70(12):932–42. Bonin S, Petrera F, Rosai J, Stanta G. DNA and RNA obtained from Bouin's fixed tissues. J Clin Pathol. 2005 Mar;58(3):313–6. Hewitt SM, Lewis FA, Cao Y, Conrad RC, Cronin M, Danenberg KD, et al. Tissue handling and specimen preparation in surgical pathology: issues concerning the recovery of nucleic acids from formalin-fixed, paraffin-embedded tissue. Arch Pathol Lab Med. 2008 Dec;132(12):1929–35. McDonough SJ, Bhagwate A, Sun Z, Wang C, Zschunke M, Gorman JA, et al. Use of FFPE-derived DNA in next generation sequencing: DNA extraction methods. PLoS One. 2019;14(4):e0211400. Neumeister VM, Parisi F, England AM, Siddiqui S, Anagnostou V, Zarrella E, et al. A tissue quality index: an intrinsic control for measurement of effects of preanalytical variables on FFPE tissue. Lab Invest. 2014 Apr;94(4):467–74. Article / Publication DetailsFirst-Page Preview
Received: April 11, 2022
Accepted: June 10, 2022
Published online: July 20, 2022
Number of Print Pages: 11
Number of Figures: 4
Number of Tables: 0
ISSN: 1015-2008 (Print)
eISSN: 1423-0291 (Online)
For additional information: https://www.karger.com/PAT
Copyright / Drug Dosage / Disclaimer Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
留言 (0)