TRP channels: a journey towards a molecular understanding of pain

Caterina, M. J. et al. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389, 816–824 (1997). This study provides the first description of the mammalian ion channel TRPV1, which established its role in the detection of heat and capsaicin.

CAS  PubMed  Article  Google Scholar 

Cao, E. Structural mechanisms of transient receptor potential ion channels. J. Gen. Physiol. 152, e201811998 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Deng, Z. et al. Cryo-EM and X-ray structures of TRPV4 reveal insight into ion permeation and gating mechanisms. Nat. Struct. Mol. Biol. 25, 252–260 (2018).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Huang, Y., Fliegert, R., Guse, A. H., Lü, W. & Du, J. A structural overview of the ion channels of the TRPM family. Cell Calcium 85, 102111 (2020).

CAS  PubMed  Article  Google Scholar 

Macpherson, L. J. et al. Noxious compounds activate TRPA1 ion channels through covalent modification of cysteines. Nature 445, 541–545 (2007).

CAS  PubMed  Article  Google Scholar 

Macpherson, L. J. et al. The pungency of garlic: activation of TRPA1 and TRPV1 in response to allicin. Curr. Biol. 15, 929–934 (2005).

CAS  PubMed  Article  Google Scholar 

Salazar, H. et al. A single N-terminal cysteine in TRPV1 determines activation by pungent compounds from onion and garlic. Nat. Neurosci. 11, 255 (2008).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Heber, S. et al. A human TRPA1-specific pain model. J. Neurosci. 39, 3845–3855 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Schwarz, M. G., Namer, B., Reeh, P. W. & Fischer, M. J. M. TRPA1 and TRPV1 antagonists do not inhibit human acidosis-induced pain. J. Pain 18, 526–534 (2017).

CAS  PubMed  Article  Google Scholar 

Trevisan, G. et al. TRPA1 mediates trigeminal neuropathic pain in mice downstream of monocytes/macrophages and oxidative stress. Brain 139, 1361–1377 (2016).

PubMed  Article  Google Scholar 

Suo, Y. et al. Structural insights into electrophile irritant sensing by the human TRPA1 channel. Neuron 105, 882–894.e5 (2020).

CAS  PubMed  Article  Google Scholar 

Zhao, J., Lin King, J. V., Paulsen, C. E., Cheng, Y. & Julius, D. Irritant-evoked activation and calcium modulation of the TRPA1 receptor. Nature 585, 141–145 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Hynkova, A., Marsakova, L., Vaskova, J. & Vlachova, V. N-terminal tetrapeptide T/SPLH motifs contribute to multimodal activation of human TRPA1 channel. Sci. Rep. 6, 28700 (2016).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Habgood, M., Seiferth, D., Zaki, A.-M., Alibay, I. & Biggin, P. Atomistic mechanisms of human TRPA1 activation by electrophile irritants through molecular dynamics simulation and mutual information analysis. Sci. Rep. 12, 4929 (2022).

CAS  PubMed  PubMed Central  Article  Google Scholar 

De Logu, F. et al. Schwann cell TRPA1 mediates neuroinflammation that sustains macrophage-dependent neuropathic pain in mice. Nat. Commun. 8, 1887 (2017).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Shields, S. D. et al. Insensitivity to pain upon adult-onset deletion of Nav1.7 or its blockade with selective inhibitors. J. Neurosci. 38, 10180–10201 (2018).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Bennett, D. L. H. & Woods, C. G. Painful and painless channelopathies. Lancet Neurol. 13, 587–599 (2014).

CAS  PubMed  Article  Google Scholar 

Dib-Hajj, S. D., Yang, Y., Black, J. A. & Waxman, S. G. The NaV1.7 sodium channel: from molecule to man. Nat. Rev. Neurosci. 14, 49–62 (2013).

CAS  PubMed  Article  Google Scholar 

Blesneac, I. et al. Rare NaV1.7 variants associated with painful diabetic peripheral neuropathy. Pain 159, 469–480 (2018).

CAS  PubMed  Article  Google Scholar 

Gavva, N. R. et al. Reduced TRPM8 expression underpins reduced migraine risk and attenuated cold pain sensation in humans. Sci. Rep. 9, 19655 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Contreras-Hernández, E. et al. Supraspinal modulation of neuronal synchronization by nociceptive stimulation induces an enduring reorganization of dorsal horn neuronal connectivity: supraspinal regulation of dorsal horn neuronal synchronization. J. Physiol. 596, 1747–1776 (2018).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Latremoliere, A. & Woolf, C. J. Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J. Pain 10, 895–926 (2009).

PubMed  PubMed Central  Article  Google Scholar 

Chen, J. & Hackos, D. H. TRPA1 as a drug target — promise and challenges. Naunyn Schmiedebergs Arch. Pharmacol. 388, 451–463 (2015).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Wang, Y. Y., Chang, R. B., Waters, H. N., McKemy, D. D. & Liman, E. R. The Nociceptor ion channel TRPA1 is potentiated and inactivated by permeating calcium ions. J. Biol. Chem. 283, 32691–32703 (2008).

CAS  PubMed  PubMed Central  Article  Google Scholar 

McGaraughty, S. et al. TRPA1 modulation of spontaneous and mechanically evoked firing of spinal neurons in uninjured, osteoarthritic, and inflamed rats. Mol. Pain 6, 14 (2010).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Kistner, K. et al. Systemic desensitization through TRPA1 channels by capsazepine and mustard oil-a novel strategy against inflammation and pain. Sci. Rep. 6, 28621 (2016).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Waller, A. V. XX. Experiments on the section of the glossopharyngeal and hypoglossal nerves of the frog, and observations of the alterations produced thereby in the structure of their primitive fibres. Philos. Trans. R. Soc. 140, 423–429 (1850).

Article  Google Scholar 

Coleman, M. P. & Freeman, M. R. Wallerian degeneration, WldS, and Nmnat. Annu. Rev. Neurosci. 33, 245–267 (2010).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Perkins, N. M. & Tracey, D. J. Hyperalgesia due to nerve injury: role of neutrophils. Neuroscience 101, 745–757 (2000).

CAS  PubMed  Article  Google Scholar 

McGettrick, H. M. Bridging the gap — immune cells that can repair nerves. Cell Mol. Immunol. 18, 784–786 (2021).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Wang, Z.-Q. et al. A newly identified role for superoxide in inflammatory pain. J. Pharmacol. Exp. Ther. 309, 869–878 (2004).

CAS  PubMed  Article  Google Scholar 

Sawada, Y., Hosokawa, H., Matsumura, K. & Kobayashi, S. Activation of transient receptor potential ankyrin 1 by hydrogen peroxide. Eur. J. Neurosci. 27, 1131–1142 (2008).

PubMed  Article  Google Scholar 

Sakaguchi, R. & Mori, Y. Transient receptor potential (TRP) channels: biosensors for redox environmental stimuli and cellular status. Free Radic. Biol. Med. 146, 36–44 (2020).

CAS  PubMed  Article  Google Scholar 

Souza Monteiro de Araujo, D., Nassini, R., Geppetti, P. & De Logu, F. TRPA1 as a therapeutic target for nociceptive pain. Expert Opin. Ther. Targets 24, 997–1008 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Sugiyama, D., Kang, S. & Brennan, T. J. Muscle reactive oxygen species (ROS) contribute to post-incisional guarding via the TRPA1 receptor. PLoS ONE 12, e0170410 (2017).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Koivisto, A. et al. TRPA1: a transducer and amplifier of pain and inflammation. Basic Clin. Pharmacol. Toxicol. 114, 50–55 (2014).

CAS  PubMed  Article  Google Scholar 

François, A. et al. A brainstem-spinal cord inhibitory circuit for mechanical pain modulation by GABA and enkephalins. Neuron 93, 822–839.e6 (2017).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Yowtak, J. et al. Reactive oxygen species contribute to neuropathic pain by reducing spinal GABA release. Pain 152, 844–852 (2011).

CAS 

留言 (0)

沒有登入
gif