Bone Quality in Relation to HIV and Antiretroviral Drugs

Wandeler G, Johnson LF, Egger M. Trends in life expectancy of HIV-positive adults on antiretroviral therapy across the globe: comparisons with general population. Curr Opin HIV AIDS. 2016;11(5):492–500.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Brown TT, Qaqish RB. Antiretroviral therapy and the prevalence of osteopenia and osteoporosis: a meta-analytic review. AIDS. 2006;20(17):2165–74.

PubMed  Article  Google Scholar 

Premaor MO, Compston JE. The Hidden Burden of Fractures in People Living With HIV. JBMR Plus. 2018;2(5):247–56.

PubMed  PubMed Central  Article  Google Scholar 

Moran CA, Weitzmann MN, Ofotokun I. Bone Loss in HIV Infection. Curr Treat Options Infect Dis. 2017;9(1):52–67.

PubMed  PubMed Central  Article  Google Scholar 

Chang CJ, et al. People with HIV infection had lower bone mineral density and increased fracture risk: a meta-analysis. Arch Osteoporos. 2021;16(1):47.

PubMed  Article  Google Scholar 

Zeng YQ, et al. Prevalence and risk factors for bone mineral density changes in antiretroviral therapy-naive human immunodeficiency virus-infected adults: a Chinese cohort study. Chin Med J (Engl). 2020;133(24):2940–6.

Article  Google Scholar 

Titanji K, et al. Dysregulated B cell expression of RANKL and OPG correlates with loss of bone mineral density in HIV infection. PLoS Pathog. 2014;10(10):e1004497.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Hoy JF, et al. Immediate initiation of antiretroviral therapy for HIV infection accelerates bone loss relative to deferring therapy: findings from the start bone mineral density substudy, a randomized trial. J Bone Miner Res. 2017;32(9):1945–55.

CAS  PubMed  Article  Google Scholar 

Compston J. HIV infection and osteoporosis. Bonekey Rep. 2015;4:636.

CAS  PubMed  PubMed Central  Article  Google Scholar 

McGinty T, et al. Does systemic inflammation and immune activation contribute to fracture risk in HIV? Curr Opin HIV AIDS. 2016;11(3):253–60.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Carr A, et al. The rate of bone loss slows after 1–2 years of initial antiretroviral therapy: final results of the Strategic Timing of Antiretroviral Therapy (START) bone mineral density substudy. HIV Med. 2020;21(1):64–70.

CAS  PubMed  Article  Google Scholar 

McComsey GA, et al. Bone disease in HIV infection: a practical review and recommendations for HIV care providers. Clin Infect Dis. 2010;51(8):937–46.

PubMed  Article  Google Scholar 

Delpino MV, Quarleri J. Influence of HIV Infection and Antiretroviral Therapy on Bone Homeostasis. Front Endocrinol (Lausanne). 2020;11:502.

Article  Google Scholar 

Shiau S, Arpadi SM, Yin MT. Bone Update: Is It Still an Issue Without Tenofovir Disoproxil Fumarate? Curr HIV/AIDS Rep. 2020;17(1):1–5.

PubMed  PubMed Central  Article  Google Scholar 

Grant PM, Cotter AG. Tenofovir and bone health. Curr Opin HIV AIDS. 2016;11(3):326–32.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Moran CA, Weitzmann MN, Ofotokun I. The protease inhibitors and HIV-associated bone loss. Curr Opin HIV AIDS. 2016;11(3):333–42.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Hunt HB, Donnelly E. Bone quality assessment techniques: geometric, compositional, and mechanical characterization from macroscale to nanoscale. Clin Rev Bone Miner Metab. 2016;14(3):133–49.

PubMed  PubMed Central  Article  Google Scholar 

Nih Consensus Development Panel on Osteoporosis Prevention, D. and Therapy. Osteoporosis prevention, diagnosis, and therapy. JAMA. 2001;285(6):785–95.

Article  Google Scholar 

Seeman E, Delmas PD. Bone quality–the material and structural basis of bone strength and fragility. N Engl J Med. 2006;354(21):2250–61.

CAS  PubMed  Article  Google Scholar 

Turner CH. Biomechanics of bone: determinants of skeletal fragility and bone quality. Osteoporos Int. 2002;13(2):97–104.

CAS  PubMed  Article  Google Scholar 

Bouxsein ML. Bone quality: where do we go from here? Osteoporos Int. 2003;14(5):118–27.

Article  Google Scholar 

Unnanuntana A, et al. Diseases Affecting Bone Quality: Beyond Osteoporosis. Clin Orthop Relat Res. 2011;469(8):2194–206.

PubMed  Article  Google Scholar 

Compston J. Bone quality: what is it and how is it measured? Arq Bras Endocrinol Metabol. 2006;50(4):579–85.

PubMed  Article  Google Scholar 

Donnelly E. Methods for assessing bone quality: a review. Clin Orthop Relat Res. 2011;469(8):2128–38.

PubMed  Article  Google Scholar 

Surowiec RK, Allen MR, Wallace JM. Bone hydration: How we can evaluate it, what can it tell us, and is it an effective therapeutic target? Bone Rep. 2022;16:101161.

CAS  PubMed  Article  Google Scholar 

Starup-Linde J, et al. Management of Osteoporosis in Patients Living With HIV—A Systematic Review and Meta-analysis. JAIDS J Acquir Immune Defic Syndr. 2020;83(1):1–8.

PubMed  Article  Google Scholar 

Hadjidakis DJ, Androulakis II. Bone remodeling. Ann N Y Acad Sci. 2006;1092:385–96.

CAS  PubMed  Article  Google Scholar 

Kylmaoja E, et al. Peripheral blood monocytes show increased osteoclast differentiation potential compared to bone marrow monocytes. Heliyon. 2018;4(9):e00780.

PubMed  PubMed Central  Article  Google Scholar 

Campbell JH, et al. The importance of monocytes and macrophages in HIV pathogenesis, treatment, and cure. AIDS. 2014;28(15):2175–87.

CAS  PubMed  Article  Google Scholar 

Gohda J, et al. HIV-1 replicates in human osteoclasts and enhances their differentiation in vitro. Retrovirology. 2015;12:12.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Raynaud-Messina B, et al. Bone degradation machinery of osteoclasts: An HIV-1 target that contributes to bone loss. Proc Natl Acad Sci USA. 2018;115(11):E2556–65.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Simonet WS, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell. 1997;89(2):309–19.

CAS  PubMed  Article  Google Scholar 

Anderson DM, et al. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature. 1997;390(6656):175–9.

CAS  PubMed  Article  Google Scholar 

Boyce BF, Xing L. Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch Biochem Biophys. 2008;473(2):139–46.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Gibellini D, et al. RANKL/OPG/TRAIL plasma levels and bone mass loss evaluation in antiretroviral naive HIV-1-positive men. J Med Virol. 2007;79(10):1446–54.

CAS  PubMed  Article  Google Scholar 

Kelesidis T, et al. Brief Report: Changes in Plasma RANKL-Osteoprotegerin in a Prospective, Randomized Clinical Trial of Initial Antiviral Therapy: A5260s. J Acquir Immune Defic Syndr. 2018;78(3):362–6.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Seminari E, et al. Osteoprotegerin and bone turnover markers in heavily pretreated HIV-infected patients. HIV Med. 2005;6(3):145–50.

CAS  PubMed  Article  Google Scholar 

Mascarau R, et al. HIV-1-Infected Human Macrophages, by Secreting RANK-L, Contribute to Enhanced Osteoclast Recruitment. Int J Mol Sci. 2020;21(9):3154. https://doi.org/10.3390/ijms21093154.

CAS  Article  PubMed Central  Google Scholar 

Titanji K, et al. T-cell receptor activator of nuclear factor-kappaB ligand/osteoprotegerin imbalance is associated with HIV-induced bone loss in patients with higher CD4+ T-cell counts. AIDS. 2018;32(7):885–94.

CAS  PubMed  Article  Google Scholar 

Fakruddin JM, Laurence J. HIV-1 Vpr enhances production of receptor of activated NF-κB ligand (RANKL) via potentiation of glucocorticoid receptor activity. Adv Virol. 2005;150(1):67–78.

CAS  Google Scholar 

Fakruddin JM, Laurence J. HIV envelope gp120-mediated regulation of osteoclastogenesis via receptor activator of nuclear factor kappa B ligand (RANKL) secretion and its modulation by certain HIV protease inhibitors through interferon-gamma/RANKL cross-talk. J Biol Chem. 2003;278(48):48251–8.

CAS  PubMed  Article  Google Scholar 

留言 (0)

沒有登入
gif