Mean residence times of TF-TF and TF-miRNA toggle switches

Balázsi G, van Oudenaarden A and Collins JJ 2011 Cellular decision making and biological noise: from microbes to mammals. Cell 144 910–925

Article  Google Scholar 

Biswas K, Jolly MK and Ghosh A 2019 Stability and mean residence times for hybrid epithelial/mesenchymal phenotype. Phys. Biol. 16 025003

CAS  Article  Google Scholar 

Bocci F, Jolly MK and Onuchic JN 2019 A biophysical model uncovers the size distribution of migrating cell clusters across cancer types. Cancer Res. 79 5527–5535

CAS  Article  Google Scholar 

Bracken CP, Gregory PA, Kolesnikoff N, et al. 2008 A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res. 68 7846–7854

CAS  Article  Google Scholar 

Burk U, Schubert J, Wellner U, et al. 2008 A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep. 9 582–589

CAS  Article  Google Scholar 

Campbell K, Rossi F, Adams J, et al. 2019 Collective cell migration and metastases induced by an epithelial-to-mesenchymal transition in Drosophila intestinal tumors. Nat. Commun. 10 2311

Article  Google Scholar 

Chickarmane V, Troein C, Nuber UA, Sauro HM and Peterson C 2006 Transcriptional dynamics of the embryonic stem cell switch. PLoS Comput. Biol. 2 e123

Article  Google Scholar 

Choi YJ, Lin C-P, Ho JJ, et al. 2011 miR-34 miRNAs provide a barrier for somatic cell reprogramming. Nat. Cell Biol. 13 1353–1360

CAS  Article  Google Scholar 

Duff C, Smith-Miles K, Lopes L and Tian T 2012 Mathematical modelling of stem cell differentiation: the pu.1–gata-1 interaction. J. Math. Biol. 64 449–468

Esquela-Kerscher A and Slack FJ 2006 Oncomirs–microRNAs with a role in cancer. Nat. Rev. Cancer 6 259–269

Giuliano M, Shaikh A, Lo HC, et al. 2018 Perspective on circulating tumor cell clusters: why it takes a village to metastasize. Cancer Res. 78 845–852

CAS  Article  Google Scholar 

Godin L, Balsat C, Van Eycke Y-R, et al. 2020 A novel approach for quantifying cancer cells showing hybrid epithelial/mesenchymal states in large series of tissue samples: towards a new prognostic marker. Cancers 12 906

CAS  Article  Google Scholar 

Gregory PA, Bracken CP, Smith E, et al. 2011 An autocrine TGF-β/ZEB/miR-200 signaling network regulates establishment and maintenance of epithelial-mesenchymal transition. Mol. Biol. Cell 22 1686–1698

CAS  Article  Google Scholar 

Hill L, Browne G and Tulchinsky E 2013 ZEB/miR-200 feedback loop: at the crossroads of signal transduction in cancer. Int. J. Cancer 132 745–754

CAS  Article  Google Scholar 

Ivey KN and Srivastava D 2010 MicroRNAs as regulators of differentiation and cell fate decisions. Cell Stem Cell 7 36–41

CAS  Article  Google Scholar 

Jia D, Jolly MK, Harrison W, et al. 2017 Operating principles of tristable circuits regulating cellular differentiation. Phys. Biol. 14 035007

Article  Google Scholar 

Jolly MK and Celià-Terrassa T 2019 Dynamics of phenotypic heterogeneity associated with EMT and stemness during cancer progression. J. Clin. Med. 8 1542

CAS  Article  Google Scholar 

Jolly MK, Mani SA and Levine H 2018 Hybrid epithelial/mesenchymal phenotype (s): The ‘fittest’for metastasis? Biochim. Biophys. Acta Rev. Cancer 1870 151–157

Kim M-S, Kim J-R, Kim D, Lander AD and Cho K-H 2012 Spatiotemporal network motif reveals the biological traits of developmental gene regulatory networks in Drosophila melanogaster. BMC Syst. Biol. 6 1–10

CAS  Article  Google Scholar 

Kloeden PE and Platen E 1992 Higher-order implicit strong numerical schemes for stochastic differential equations. J. Stat. Phys. 66 283–314

Article  Google Scholar 

Laslo P, Spooner CJ, Warmflash A, et al. 2006 Multilineage transcriptional priming and determination of alternate hematopoietic cell fates. Cell 126 755–766

CAS  Article  Google Scholar 

Liao T-T and Yang M-H 2020 Hybrid epithelial/mesenchymal state in cancer metastasis: clinical significance and regulatory mechanisms. Cells 9 623

CAS  Article  Google Scholar 

Lu M, Jolly MK, Gomoto R, et al. 2013 Tristability in cancer-associated microRNA-TF chimera toggle switch. J. Phys. Chem. B 117 13164–13174

CAS  Article  Google Scholar 

Martinez NJ and Walhout AJ 2009 The interplay between transcription factors and microRNAs in genome-scale regulatory networks. Bioessays 31 435–445

CAS  Article  Google Scholar 

Nieto MA, Huang R Y-J, Jackson RA and Thiery JP 2016 EMT: 2016. Cell 166 21–45

CAS  Article  Google Scholar 

Niwa H, Toyooka Y, Shimosato D, et al. 2005 Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation. Cell 123 917–929

CAS  Article  Google Scholar 

Pastushenko I and Blanpain C 2019 EMT transition states during tumor progression and metastasis. Trends Cell Biol. 29 212–226

CAS  Article  Google Scholar 

Polytarchou C, Iliopoulos D and Struhl K 2012 An integrated transcriptional regulatory circuit that reinforces the breast cancer stem cell state. Proc. Natl. Acad. Sci. USA 109 14470–14475

CAS  Article  Google Scholar 

Qian P, Banerjee A, Wu Z-S, et al. 2012 Loss of SNAIL regulated miR-128-2 on chromosome 3p22. 3 targets multiple stem cell factors to promote transformation of mammary epithelial cells. Cancer Res. 72 6036–6050

CAS  Article  Google Scholar 

Siemens H, Jackstadt R, Hünten S, et al. 2011 miR-34 and SNAIL form a double-negative feedback loop to regulate epithelial-mesenchymal transitions. Cell Cycle 10 4256–4271

CAS  Article  Google Scholar 

Subbalakshmi AR, Kundnani D, Biswas K, et al. 2020 NFATc acts as a non-canonical phenotypic stability factor for a hybrid epithelial/mesenchymal phenotype. Front. Oncol. 10 1794

Article  Google Scholar 

Subbalakshmi AR, Sahoo S, Biswas K and Jolly MK 2021 A computational systems biology approach identifies SLUG as a mediator of partial epithelial-mesenchymal transition (EMT). Cells Tissues Organs 10 1–14

Yang X, Lin X, Zhong X, et al. 2010 Double-negative feedback loop between reprogramming factor LIN28 and microRNA let-7 regulates aldehyde dehydrogenase 1–positive cancer stem cells. Cancer Res. 70 9463–9472

Yang Y, Ahn Y-H, Gibbons DL, et al. 2011 The Notch ligand Jagged2 promotes lung adenocarcinoma metastasis through a miR-200–dependent pathway in mice. J. Clin. Investig. 121 1373–1385

留言 (0)

沒有登入
gif