Mobile CRISPR-Cas9 based anti-phage system in E. coli

Li J, Neubauer P. Escherichia coli as a cell factory for heterologous production of nonribosomal peptides and polyketides. New Biotechnology, 2014, 31(6): 579–585

Article  Google Scholar 

Baeshen N A, Baeshen M N, Sheikh A, Bora R S, Ahmed M M M, Ramadan H A I, Saini K S, Redwan E M. Cell factories for insulin production. Microbial Cell Factories, 2014, 13(1): 141

Article  Google Scholar 

Wang Z, Sun J, Yang Q, Yang J. Metabolic engineering Escherichia coli for the production of lycopene. Molecules (Basel, Switzerland), 2020, 25(14): 3136

CAS  Article  Google Scholar 

Lemuth K, Steuer K, Albermann C. Engineering of a plasmid-free Escherichia coli strain for improved in vivo biosynthesis of astaxanthin. Microbial Cell Factories, 2011, 10(1): 29

CAS  Article  Google Scholar 

Li M, Nian R, Xian M, Zhang H. Metabolic engineering for the production of isoprene and isopentenol by Escherichia coli. Applied Microbiology and Biotechnology, 2018, 102(18): 7725–7738

CAS  Article  Google Scholar 

Zhao C, Zhang Y, Li Y. Production of fuels and chemicals from renewable resources using engineered Escherichia coli. Biotechnology Advances, 2019, 37(7): 107402

CAS  Article  Google Scholar 

Wu H, Fan Z, Jiang X, Chen J, Chen G. Enhanced production of polyhydroxybutyrate by multiple dividing E. coli. Microbial Cell Factories, 2016, 15(1): 128

Article  Google Scholar 

Chen G, Jiang X. Engineering bacteria for enhanced polyhydroxyalkanoates (PHA) biosynthesis. Synthetic and Systems Biotechnology, 2017, 2(3): 192–197

Article  Google Scholar 

Liu X, Hua K, Liu D, Wu Z, Wang Y, Zhang H, Deng Z, Pfeifer B A, Jiang M. Heterologous biosynthesis of type II polyketide products using E. coli. ACS Chemical Biology, 2020, 15(5): 1177–1183

CAS  Article  Google Scholar 

Tang Y, Wang M, Qin H, An X, Guo Z, Zhu G, Zhang L, Chen Y. Deciphering the biosynthesis of TDP-α-L-oleandrose in avermectin. Journal of Natural Products, 2020, 83(10): 3199–3206

CAS  Article  Google Scholar 

Jones D T, Shirley M, Wu X Y, Keis S. Bacteriophage infections in the industrial acetone butanol (AB) fermentation process. Journal of Molecular Microbiology and Biotechnology, 2000, 2(1): 21–26

CAS  PubMed  Google Scholar 

Chaturongakul S, Ounjai P. Phage-host interplay: examples from tailed phages and Gram-negative bacterial pathogens. Frontiers in Microbiology, 2014, 5: 442

Article  Google Scholar 

Kronheim S, Daniel I M, Duan Z, Hwang S, Wong A I, Mantel I, Nodwell J R, Maxwell K L. A chemical defence against phage infection. Nature, 2018, 564(7735): 283–286

CAS  Article  Google Scholar 

Abedon S T. Bacteriophage secondary infection. Virologica Sinica, 2015, 30(1): 3–10

CAS  Article  Google Scholar 

Hampton H G, Watson B N J, Fineran P C. The arms race between bacteria and their phage foes. Nature, 2020, 577(7790): 327–336

CAS  Article  Google Scholar 

Scholl D, Adhya S, Merril C. Escherichia coli K1’s capsule is a barrier to bacteriophage T7. Applied and Environmental Microbiology, 2005, 71(8): 4872–4874

CAS  Article  Google Scholar 

Vasu K, Nagaraja V. Diverse functions of restriction-modification systems in addition to cellular defense. Microbiology and Molecular Biology Reviews, 2013, 77(1): 53–72

CAS  Article  Google Scholar 

Pleska M, Guet C C. Effects of mutations in phage restriction sites during escape from restriction-modification. Biology Letters, 2017, 13(12): 20170646

Article  Google Scholar 

Zhou Y, Xu X, Wei Y, Cheng Y, Guo Y, Khudyakov I, Liu F, He P, Song Z, Li Z, et al. A widespread pathway for substitution of adenine by diaminopurine in phage genomes. Science, 2021, 372 (6541): 512–516

CAS  Article  Google Scholar 

Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero D A, Horvath P. CRISPR provides acquired resistance against viruses in prokaryotes. Science, 2007, 315(5819): 1709–1712

CAS  Article  Google Scholar 

Smith G P. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science, 1985, 228 (4705): 1315–1317

CAS  Article  Google Scholar 

Esvelt K M, Carlson J C, Liu D R. A system for the continuous directed evolution of biomolecules. Nature, 2011, 472(7344): 499–550

CAS  Article  Google Scholar 

Carlson J C, Badran A H, Guggiana N D A, Liu D R. Negative selection and stringency modulation in phage-assisted continuous evolution. Nature Chemical Biology, 2014, 10(3): 216–222

CAS  Article  Google Scholar 

Bryson D I, Fan C, Guo L, Miller C, Soll D, Liu D R. Continuous directed evolution of aminoacyl-tRNA synthetases. Nature Chemical Biology, 2018, 14(2): 186

CAS  Article  Google Scholar 

de Leeuw M, Baron M, David O B, Kushmaro A. Molecular insights into bacteriophage evolution toward its host. Viruses, 2020, 12(10): 1132

CAS  Article  Google Scholar 

Chayot R, Montagne B, Mazel D, Ricchetti M. An end-joining repair mechanism in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(5): 2141–2146

CAS  Article  Google Scholar 

Liu L, Zhao D, Ye L, Zhan T, Xiong B, Hu M, Bi C, Zhang X. A programmable CRISPR/Cas9-based phage defense system for Escherichia coli BL21(DE3). Microbial Cell Factories, 2020, 19 (1): 136

CAS  Article  Google Scholar 

Dong H, Xiang H, Mu D, Wang D, Wang T. Exploiting a conjugative CRISPR/Cas9 system to eliminate plasmid harbouring the mcr-1 gene from Escherichia coli. International Journal of Antimicrobial Agents, 2019, 53(1): 1–8

CAS  Article  Google Scholar 

Xie Z X, Li B Z, Mitchell L A, Wu Y, Qi X, Jin Z, Jia B, Wang X, Zeng B X, Liu H M, et al. “Perfect” designer chromosome V and behavior of a ring derivative. Science, 2017, 355(6329): 1046

CAS  Article  Google Scholar 

Wu Y, Li B Z, Zhao M, Mitchell L A, Xie Z X, Lin Q H, Wang X, Xiao W H, Wang Y, Zhou X, et al. Bug mapping and fitness testing of chemically synthesized chromosome X. Science, 2017, 355 (6329): 1048

CAS  Article  Google Scholar 

Chen W G, Han M Z, Zhou J T, Ge Q, Wang P P, Zhang X C, Zhu S Y, Song L F, Yuan Y J. An artificial chromosome for data storage. National Science Review, 2021, 8(5): 62–70

Article  Google Scholar 

Wang L, Jiang S, Chao C, He W, Wu X, Wang F, Tong T, Zou X, Li Z, Luo J, et al. Synthetic genomics: from DNA synthesis to genome design. Angewandte Chemie International Edition, 2018, 57(7): 1748–1756

CAS  Article  Google Scholar 

Cello J, Paul A V, Wimmer E. Chemical synthesis of poliovirus cDNA: generation of infectious virus in the absence of natural template. Science, 2002, 297(5583): 1016–1018

CAS  Article  Google Scholar 

Smith H O, Iii C A H, Pfannkoch C, Venter J C. Generating a synthetic genome by whole genome assembly: X174 bacteriophage from synthetic oligonucleotides. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100 (26): 15440–15445

CAS  Article  Google Scholar 

Chan L Y, Kosuri S, Endy D. Refactoring bacteriophage T7. Molecular Systems Biology, 2005, 1: 2005.0018

Article  Google Scholar 

Thao T, Labroussaa F, Ebert N, Kovski P V, Thiel V. Rapid reconstruction of SARS-CoV-2 using a synthetic genomics platform. Nature, 2020, 582(7813): 561–565

Article  Google Scholar 

Zhang J, Zhang D, Zhu J, Liu H, Liang S, Luo Y. Efficient multiplex genome editing in Streptomyces via engineered CRISPR-Cas12a systems. Frontiers in Bioengineering and Biotechnology, 2020, 8: 726

Article  Google Scholar 

Wang L, Wang H, Liu H, Zhao Q, Liu B, Wang L, Zhang J, Zhu J, Bao R, Luo Y. Improved CRISPR-Cas12a-assisted one-pot DNA editing method enables seamless DNA editing. Biotechnology and Bioengineering, 2019, 116(6): 1463–1474

CAS  Article  Google Scholar 

Liu H, Wang L, Luo Y. Blossom of CRISPR technologies and applications in disease treatment. Synthetic and Systems Biotechnology, 2018, 3(4): 217–228

Article  Google Scholar 

留言 (0)

沒有登入
gif