Environmental hypoxia induces apoptosis in large yellow croaker Larimichthys crocea via both intrinsic and extrinsic pathways

Acehan D, Jiang X J, Morgan D G et al. 2002. Three-dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding, and activation. Molecular Cell, 9(2): 423–432.

Article  Google Scholar 

Ashkenazi A, Dixit V M. 1998. Death receptors: signaling and modulation. Science, 281(5381): 1305–1308.

Article  Google Scholar 

Breitburg D, Levin L A, Oschlies A et al. 2018. Declining oxygen in the global ocean and coastal waters. Science, 359(6371): eaam7240.

Article  Google Scholar 

Brukamp K, Jim B, Moeller M J et al. 2007. Hypoxia and podocyte-specific Vhlh deletion confer risk of glomerular disease. American Journal of Physiology Renal Physiology, 293(4): F1397–F1407.

Article  Google Scholar 

Cai M, He P, Fang D L. 2019. Hypoxia-induced mitochondrial translocation of DNM1L increases mitochondrial fission and triggers mPTP opening in HCC cells via activation of HK2. Oncology Reports, 42(3): 1125–1132.

Google Scholar 

Cassidy-Stone A, Chipuk J E, Ingerman E et al. 2008. Chemical inhibition of the mitochondrial division dynamin reveals its role in Bax/Bak-dependent mitochondrial outer membrane permeabilization. Developmental Cell, 14(2): 193–204.

Article  Google Scholar 

Chao D T, Korsmeyer S J. 1998. BCL-2 FAMILY: regulators of cell death. Annual Review of Immunology, 16: 395–419.

Article  Google Scholar 

Chao W, Shen Y, Li L et al. 2002. Importance of FADD signaling in serum deprivation- and hypoxia-induced cardiomyocyte apoptosis. Journal of Biological Chemistry, 277(35): 31639–31645.

Article  Google Scholar 

Crompton M. 1999. The mitochondrial permeability transition pore and its role in cell death. Biochemical Journal, 341(2): 233–249.

Article  Google Scholar 

Diaz R J. 2001. Overview of hypoxia around the world. Journal of Environmental Quality, 30(2): 275–281.

Article  Google Scholar 

Ding C Y, Hu L S, Li Y et al. 2018. Effects of hypoxia stress on cardiomyocyte apoptosis and the control for Bax, Bcl-2 expressions in Hypophthalmichthys molitrix. Freshwater Fisheries, 48(2): 10–15. (in Chinese with English abstract)

Google Scholar 

Dong Y, Wu Y, Zhao G L et al. 2019. Inhibition of autophagy by 3-MA promotes hypoxia-induced apoptosis in human colorectal cancer cells. European Review for Medical and Pharmacological Sciences, 23(3): 1047–1054.

Google Scholar 

Feng J Y, Tan W, Li T et al. 2020. Human retinal pigment epithelial cells are protected against hypoxia by BNIP3. Annals of Translational Medicine, 8(22): 1502.

Article  Google Scholar 

Goel G, Guo M, Ding J et al. 2010. Combined effect of tumor necrosis factor (TNF) - α and heat shock protein (HSP)-70 in reducing apoptotic injury in hypoxia: a cell culture study. Neuroscience Letters, 483(3): 162–166.

Article  Google Scholar 

Green D R, Reed J C. 1998. Mitochondria and apoptosis. Science, 281(5381): 1309–1312.

Article  Google Scholar 

Grilo A L, Mantalaris A. 2019. Apoptosis: a mammalian cell bioprocessing perspective. Biotechnology Advances, 37(3): 459–475.

Article  Google Scholar 

Gurevich R M, Regula K M, Kirshenbaum L A. 2001. Serpin protein CrmA suppresses hypoxia-mediated apoptosis of ventricular myocytes. Circulation, 103(15): 1984–1991.

Article  Google Scholar 

Halliwell B. 1992. Reactive oxygen species and the central nervous system. Journal of Neurochemistry, 59(5): 1609–1623.

Article  Google Scholar 

Hammond E M, Denko N C, Dorie M J et al. 2002. Hypoxia links ATR and p53 through replication arrest. Molecular and Cellular Biology, 22(6): 1834–1843.

Article  Google Scholar 

Hausenloy D J, Duchen M R, Yellon D M. 2003. Inhibiting mitochondrial permeability transition pore opening at reperfusion protects against ischaemia-reperfusion injury. Cardiovascular Research, 60(3): 617–625.

Article  Google Scholar 

Hu H L, Zhang Z X, Chen C S et al. 2010. Effects of mitochondrial potassium channel and membrane potential on hypoxic human pulmonary artery smooth muscle cells. American Journal of Respiratory cell and Molecular Biology, 42(6): 661–666.

Article  Google Scholar 

Kerr J F R, Wyllie A H, Currie A R. 1972. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. British Journal of Cancer, 26(4): 239–257.

Article  Google Scholar 

Khurana P, Ashraf Q M, Mishra O P et al. 2002. Effect of hypoxia on caspase-3, -8, and -9 activity and expression in the cerebral cortex of newborn piglets. Neurochemical Research, 27(9): 931–938.

Article  Google Scholar 

Kim C H, Ko A R, Lee S Y et al. 2010. Hypoxia switches glucose depletion-induced necrosis to phosphoinositide 3-kinase/Akt-dependent apoptosis in A549 lung adenocarcinoma cells. International Journal of Oncology, 36(1): 117–124.

Google Scholar 

Kim Y, Kim Y S, Noh M Y et al. 2017. Neuroprotective effects of a novel poly (ADP-ribose) polymerase-1 inhibitor, JPI-289, in hypoxic rat cortical neurons. Clinical and Experimental Pharmacology and Physiology, 44(6): 671–679.

Article  Google Scholar 

Knudson C M, Tung K S K, Tourtellotte W G et al. 1995. Bax-deficient mice with lymphoid hyperplasia and male germ cell death. Science, 270(5233): 96–99.

Article  Google Scholar 

Kunz M, Ibrahim S, Koczan D et al. 2001. Activation of c-Jun NH2-terminal kinase/stress-activated protein kinase (JNK/SAPK) is critical for hypoxia-induced apoptosis of human malignant melanoma. Cell Growth & Differentiation, 12(3): 137–145.

Google Scholar 

Kurpakus-Wheater M, Sexton R, McDermott M L et al. 2003. Caspase-9 activation in hypoxic human corneal epithelial cells. Apoptosis, 8(6): 681–688.

Article  Google Scholar 

Li J Y, Dai H, Liu H et al. 2011. Effects of scutellarin benzyl ester on the expressions of Bcl-2 and Bax in cardiomyocytes injured by acute hypoxia. Chinese Critical Care Medicine, 23(6): 337–340. (in Chinese with English abstract)

Google Scholar 

Li Y L, Xu G Y, Xiao J W et al. 2017. Studies on the protective role of zebrafish HO1 in response to hypoxia. Acta Hydrobiologica Sinica, 41(1): 43–49. (in Chinese with English abstract)

Google Scholar 

Liu X S, Kim C N, Yang J et al. 1996. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell, 86(1): 147–157.

Article  Google Scholar 

Lohberger B, Steinecker-Frohnwieser B, Stuendl N et al. 2016. The proteasome inhibitor bortezomib affects chondrosarcoma cells via the mitochondria-caspase dependent pathway and enhances death receptor expression and autophagy. PLoS One, 11(12): e0168193.

Article  Google Scholar 

Lu G, Mak Y T, Wai S M et al. 2005. Hypoxia-induced differential apoptosis in the central nervous system of the sturgeon (Acipenser shrenckii). Microscopy Research and Technique, 68(5): 258–263.

Article  Google Scholar 

Luo S Y, Gao X M, Ding J et al. 2019. Transcriptome sequencing reveals the traits of spermatogenesis and testicular development in large yellow croaker (Larimichthys crocea). Genes, 10(12): 958.

Article  Google Scholar 

Martínez M L, Raynard E L, Rees B B et al. 2011. Oxygen limitation and tissue metabolic potential of the African fish Barbus neumayeri: roles of native habitat and acclimatization. BMC Ecology, 11(1): 1–9.

Article  Google Scholar 

Mishra O P, Delivoria-Papadopoulos M. 2006. Effect of neuronal nitric oxide synthase inhibition on caspase-9 activity during hypoxia in the cerebral cortex of newborn piglets. Neuroscience Letters, 401(1–2): 81–85.

Article  Google Scholar 

Mishra O P, Randis T, Ashraf Q M et al. 2006. Hypoxia-induced Bax and Bcl-2 protein expression, caspase-9 activation, DNA fragmentation, and lipid peroxidation in mitochondria of the cerebral cortex of newborn piglets: the role of nitric oxide. Neuroscience, 141(3): 1339–1349.

Article  Google Scholar 

Murphy A N, Fiskum G, Beal M F. 1999. Mitochondria in neurodegeneration: bioenergetic function in cell life and death. Journal of Cerebral Blood Flow & Metabolism, 19(3): 231–245.

Article  Google Scholar 

Nagarajah N S, Vigneswaran N, Zacharias W. 2004. Hypoxiamediated apoptosis in oral carcinoma cells occurs via two independent pathways. Molecular Cancer, 3(1): 38.

Article  Google Scholar 

Ondricek K, Thomas P. 2018. Effects of hypoxia exposure on apoptosis and expression of membrane steroid receptors, ZIP9, mPRα, and GPER in Atlantic croaker ovaries. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 224: 84–92.

Article  Google Scholar 

Ow Y L P, Green D R, Hao Z Y et al. 2008. Cytochrome c: functions beyond respiration. Nature Reviews Molecular Cell Biology, 9(7): 532–542.

Article  Google Scholar 

Pan W L, Wong J H, Fang E F et al. 2014. Preferential cytotoxicity of the type I ribosome inactivating protein alpha-momorcharin on human nasopharyngeal carcinoma cells under normoxia and hypoxia. Biochemical Pharmacology, 89(3): 329–339.

Article  Google Scholar 

Poli A, Beraudi A, Villani L et al. 2003. Group II metabotropic glutamate receptors regulate the vulnerability to hypoxic brain damage. The Journal of Neuroscience, 23(14): 6023–6029.

Article  Google Scholar 

Quignard S, Mosser G, Boissière M et al. 2012. Long-term fate of silica nanoparticles interacting with human dermal fibroblasts. Biomaterials, 33(17): 4431–4442.

Article  Google Scholar 

Reed J C. 2006. Proapoptotic multidomain Bcl-2/Bax-family proteins: mechanisms, physiological roles, and therapeutic opportunities. Cell Death & Differentiation, 13(8): 1378–1386.

Article  Google Scholar 

Ren G X, Guo W, Ye D X et al. 2006. A study on the mechanism of inducing apoptosis of Tca8113 cells by means of ultrasound hyperthermia. Shanghai Journal of Stomatology, 15(5): 507–511. (in Chinese with English abstract)

Google Scholar 

Ren Q Y, Zhang M Z, Li M et al. 2018. Differential induction of gene expressions, protein contents and enzyme activities involved in hypoxic responsive in liver tissues of mudskipper Boleophthalmus pectinirostris exposed to acute hypoxia. Oceanologia et Limnologia Sinica, 49(4): 889–896. (in Chinese with English abstract)

Google Scholar 

Schulte P M. 2014. What is environmental stress? Insights from fish living in a variable environment. Journal of Experimental Biology, 217(1): 23–34.

Article  Google Scholar 

Semenza G L. 2011. Oxygen sensing, homeostasis, and disease. The New England Journal of Medicine, 365(6): 537–547.

Article  Google Scholar 

Sendoel A, Hengartner M O. 2014. Apoptotic cell death under hypoxia. Physiology, 29(3): 168–176.

Article  Google Scholar 

Sollid J, De Angelis P, Gundersen K et al. 2003. Hypoxia induces adaptive and reversible gross morphological changes in crucian carp gills. Journal of Experimental Biology, 206(20): 3667–3673.

Article  Google Scholar 

Sun C F, Tao Y, Jiang X Y et al. 2011. IGF binding protein 1 is correlated with hypoxia-induced growth reduce and developmental defects in grass carp (Ctenopharyngodon idellus) embryos. General and Comparative Endocrinology, 172(3): 409–415.

Article  Google Scholar 

Susin S A, Lorenzo H K, Zamzami N et al. 1999. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature, 397(6718): 441–446.

留言 (0)

沒有登入
gif