G. C. Román, “Brain hypoperfusion: a critical factor in vascular dementia,” Neuro. Res., 26, No. 5, 454–458 (2004), https://doi.org/10.1179/016164104225017686.
J. C. de la Torre, “Cardiovascular risk factors promote brain hypoperfusion leading to cognitive decline and dementia,” Cardiovasc. Psychiatry Neurol., 2012, Article ID 367516 (2012), https://doi.org/10.1155/2012/367516.
D. Inzitari, G. Pracucci, A. Poggesi, et al., “Changes in white matter as determinant of global functional decline in older independent outpatients: three year follow-up of LADIS (leukoaraiosis and disability) study cohort,” BMJ, 339, b2477 (2009), https://doi.org/10.1136/bmj.b2477.
R. Schmidt, A. Berghold, H. Jokinen, et al., “White matter lesion progression in LADIS: frequency, clinical effects, and sample size calculations,” Stroke, 43, No. 10, 2643–2647 (2012), https://doi.org/10.1161/STROKEAHA.112.662593.
F. Cechetti, A. S. Pagnussat, P. V. Worm, et al., “Chronic brain hypoperfusion causes early glial activation and neuronal death, and subsequent long-term memory impairment,” Brain Res. Bull., 87, No. 1, 109–116 (2012), https://doi.org/10.1016/j.brainresbull.2011.10.006.
CAS Article PubMed Google Scholar
H. Tomimoto, M. Ihara, H. Wakita, et al., “Chronic cerebral hypoperfusion induces white matter lesions and loss of oligodendroglia with DNA fragmentation in the rat,” Acta Neuropathol., 106, No. 6, 527–534 (2003), https://doi.org/10.1007/s00401-003-0749-3.
CAS Article PubMed Google Scholar
É. Vicente, D. Degerone, L. Bohn, et al., “Astroglial and cognitive effects of chronic cerebral hypoperfusion in the rat,” Brain Res., 1251, 204–212 (2009), https://doi.org/10.1016/j.brainres.2008.11.032.
CAS Article PubMed Google Scholar
A. Nishino, Y. Tajima, H. Takuwa, et al., “Long-term effects of cerebral hypoperfusion on neural density and function using misery perfusion animal model,” Sci. Rep., 6, 25072 (2016), https://doi.org/10.1038/srep25072.
CAS Article PubMed PubMed Central Google Scholar
A. K. Saxena, S. S. Abdul-Majeed, S. Gurtu, and W. M. Mohamed, “Investigation of redox status in chronic cerebral hypoperfusion-induced neurodegeneration in rats,” Appl. Transl. Genom., 5, 30–32 (2015), https://doi.org/10.1016/j.atg.2015.05.004.
Article PubMed PubMed Central Google Scholar
F. Gueniot, J. L. Morel, T. Couffinhal, and C. Duplàa, “Development of a mouse model for chronic cerebral hypoperfusion: Analysis of its impact on neurovascular unit and cognitive impairment,” Arch. Cardiovasc. Dis. Suppl., 10, No. 2, 225–226 (2018), https://doi.org/10.1016/j.acvdsp.2018.02.107.
E. Sigfridsson, M. Marangoni, J. A. Johnson, et al., “Astrocyte-specific overexpression of Nrf2 protects against optic tract damage and behavioural alterations in a mouse model of cerebral hypoperfusion,” Sci. Rep., 8, No. 1, 12552 (2018), https://doi.org/10.1038/s41598-018-30675-4.
Y. Manso, P. R. Holland, A. Kitamura, et al., “Minocycline reduces microgliosis and improves subcortical white matter function in a model of cerebral vascular disease,” Glia, 66, No. 1, 34–46 (2018), https://doi.org/10.1002/glia.23190.
K. Yoshizaki, K. Adachi, S. Kataoka, et al., “Chronic cerebral hypoperfusion induced by right unilateral common carotid artery occlusion causes delayed white matter lesions and cognitive impairment in adult mice,” Exp. Neurol., 210, No. 2, 585–591 (2008), https://doi.org/10.1016/j.expneurol.2007.12.005.
B. Diamond, G. Honig, S. Mader, et al., “Brain-reactive antibodies and disease,” Annu. Rev. Immunol., 31, 345–385 (2013), https://doi.org/10.1146/annurevimmunol-020711-075041.
CAS Article PubMed PubMed Central Google Scholar
S. Irani and B. Lang, “Autoantibody-mediated disorders of the central nervous system,” Autoimmunity, 41, No. 1, 55–65 (2008), https://doi.org/10.1080/08916930701619490.
CAS Article PubMed Google Scholar
A. N. Grabovoy and L. M. Jaremenko, “The condition of brain hemisphere cortex at circulation problems modulation and at the correction of accompanying changes in immune system in rats.” Nauk. Visn. Bogomolets Natl. Med. Univ. (Kyiv), No. 4, 28–33 (2009).
A. Villa, E. Vegeto, A. Poletti, and A. Maggi, “Estrogens, neuroinflammation, and neurodegeneration,” Endocr. Rev., 37, No. 4, 372–402 (2016), https://doi.org/10.1210/er.2016-1007.
CAS Article PubMed PubMed Central Google Scholar
L. M. Yaremenko, O. M. Grabovy, and V. G. Bordonos, “The state of autoantibody titers to tissue antigens of the brain and circulating immune complexes in the modeling of blood supply disorders of the brain of varying severity and its correction,” Immunol. Allergol. (Kyiv), Nos. 2–3, 55–59 (2009).
L. M. Yaremenko and A. N. Grabovoy, “Changes in the expression of neurofilament protein in the rat sensorimotor cortex induced by microembolization of blood vessels: effect of immunomodulation,” Neurophysiology, 48, No. 2, 111–116. (2016).
Y. Fan, X. Tang, E. Vitriol, et al., “Actin capping protein is required for dendritic spine development and synapse formation,” J. Neurosci., 31, No. 28, 10228–10233 (2011), https://doi.org/10.1523/JNEUROSCI.0115-11.2011.
CAS Article PubMed PubMed Central Google Scholar
E. Schroeder, S. Vogelgesang, A. Popa-Wagner, and C. Kessler, “Neurofilament expression in the rat brain after cerebral infarction: effect of age,” Neurobiol. Aging, 24, No. 1, 135–145 (2003), https://doi.org/10.1016/s0197-4580(02)00063-5.
CAS Article PubMed Google Scholar
B. Mages, S. Aleithe, S. Altmann, et al., “Impaired neurofilament integrity and neuronal morphology in different models of focal cerebral ischemia and human stroke tissue?” Front. Cell. Neurosci., 12, 161 (2018), https://doi.org/10.3389/fncel.2018.00161.
CAS Article PubMed PubMed Central Google Scholar
H. Stefen, C. Chaichim, J. Power, and T. Fath, “Regulation of the postsynaptic compartment of excitatory synapses by the actin cytoskeleton in health and its disruption in disease,” Neural Plast., 2016, Article ID 2371970 (2016), https://doi.org/10.1155/2016/2371970.
V. Sharma, T. W. Ling, S. S. Rewell, at al., “A novel population of α-smooth muscle actin-positive cells activated in a rat model of stroke: an analysis of the spatio-temporal distribution in response to ischemia,” J. Cereb. Blood Flow Metab., 32, No. 11, 2055–2065 (2012), https://doi.org/10.1038/jcbfm.2012.107.
K. Xu, G. Zhong, and X. Zhuang, “Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons,” Science, 339, No. 6118, 452–456 (2013), https://doi.org/10.1126/science.1232251.
CAS Article PubMed Google Scholar
Y. Shen and L. C. Yu, “Potential protection of curcumin against hypoxia-induced decreases in beta-III tubulin content in rat prefrontal cortical neurons,” Neurochem. Res., 33, No. 10, 2112–2117 (2008), https://doi.org/10.1007/s11064-008-9720-y.
CAS Article PubMed Google Scholar
A. Latremoliere, L. Cheng,, M DeLisle, et al, “Neuronal-specific TUBB3 is not required for normal neuronal function but is essential for timely axon regeneration,” Cell Rep., 24, No. 7, 1865–1879 (2018), https://doi.org/10.1016/j.celrep.2018.07.029.
CAS Article PubMed PubMed Central Google Scholar
L. C. Kapitein and C. C. Hoogenraad, “Building the neuronal microtubule cytoskeleton,” Neuron, 87, No. 3, 492–506 (2015), doi: https://doi.org/10.1016/j.neuron.2015.05.046.
CAS Article PubMed Google Scholar
A. Akhmanova and C. C. Hoogenraad, “Microtubule minus-end-targeting proteins,” Curr. Biol., 25, No. 4, R162–R171 (2015), https://doi.org/10.1016/j.cub.2014.12.027.
CAS Article PubMed Google Scholar
P. R. Gordon-Weeks and A. E. Fournier, “Neuronal cytoskeleton in synaptic plasticity and regeneration,” J. Neurochem., 129, No. 2, 206–212 (2014), https://doi.org/10.1111/jnc.12502.
CAS Article PubMed Google Scholar
J. Bielewicz, J. Kurzepa, E. Czekajska-Chehab, et al., “Does serum Tau protein predict the outcome of patients with ischemic stroke?” J. Mol. Neurosci., 43, No. 3, 241–245 (2011), https://doi.org/10.1007/s12031-010-9403-4.
CAS Article PubMed Google Scholar
H. Kadavath, M. Jaremko, Ł. Jaremko et al., “Folding of the Tau protein on microtubules,” Angew. Chem. Int. Ed. Engl., 54, No. 35, 10347–10351 (2015), https://doi.org/10.1002/anie.201501714.
CAS Article PubMed Google Scholar
A. R. Nelson, M. D. Sweeney, A. P. Sagare, and B. V. Zlokovic, “Neurovascular dysfunction and neurodegeneration in dementia and Alzheimer’s disease,” Biochim. Biophys. Acta, 1862, No. 5, 887–900 (2016), https://doi.org/10.1016/j.bbadis.2015.12.016.
CAS Article PubMed Google Scholar
J. Eira, C. S. Silva, M. M Sousa and M. A. Liz, “The cytoskeleton as a novel therapeutic target for old neurodegenerative disorders,” Prog. Neurobiol., 141, 61–82 (2016), https://doi.org/10.1016/j.pneurobio.2016.04.007.
CAS Article PubMed Google Scholar
K. Kounakis and N. Tavernarakis, “The cytoskeleton as a modulator of aging and neurodegeneration,” Adv. Exp. Med. Biol., 1178, 227–245 (2019), https://doi.org/10.1007/978-3-030-25650-0_12.
留言 (0)