A Biomechanical Study on Cortical Bone Trajectory Screw Fixation Augmented With Cement in Osteoporotic Spines

1. Amirouche, F, Solitro, GF, Magnan, BP. Stability and Spine Pedicle Screws Fixation Strength-A Comparative Study of Bone Density and Insertion Angle. Spine Deform. 2016;4:261-267. doi:10.1016/j.jspd.2015.12.008.
Google Scholar | Crossref | Medline2. Wray, S, Mimran, R, Vadapalli, S, Shetye, SS, McGilvray, KC, Puttlitz, CM. Pedicle screw placement in the lumbar spine: effect of trajectory and screw design on acute biomechanical purchase. J Neurosurg Spine. 2015;22:503-510. doi:10.3171/2014.10.spine14205.
Google Scholar | Crossref | Medline3. Galbusera, F, Volkheimer, D, Reitmaier, S, Berger-Roscher, N, Kienle, A, Wilke, HJ. Pedicle screw loosening: a clinically relevant complication? Eur Spine Jand the European Section of the Cervical Spine Research Society. 2015;24:1005-1016. 10.1007/s00586-015-3768-6.
Google Scholar | Crossref | Medline4. Hoppe, S, Keel, MJ. Pedicle screw augmentation in osteoporotic spine: indications, limitations and technical aspects. Eur J Trauma Emerg Surg. 2017;43:3-8. 10.1007/s00068-016-0750-x. Official publication of the European Trauma Society.
Google Scholar | Crossref | Medline5. Linhardt, O, Lüring, C, Matussek, J, Hamberger, C, Plitz, W, Grifka, J. Stability of pedicle screws after kyphoplasty augmentation: an experimental study to compare transpedicular screw fixation in soft and cured kyphoplasty cement. J Spinal Disord Tech. 2006;19:87-91. doi:10.1097/01.bsd.0000177212.52583.bd.
Google Scholar | Crossref | Medline6. Zhuang, XM, Yu, BS, Zheng, ZM, Zhang, JF, Lu, WW. Effect of the degree of osteoporosis on the biomechanical anchoring strength of the sacral pedicle screws: an in vitro comparison between unaugmented bicortical screws and polymethylmethacrylate augmented unicortical screws. Spine. 2010;35:E925-E931. doi:10.1097/BRS.0b013e3181c5fb21.
Google Scholar | Crossref | Medline7. Elder, BD, Lo, SF, Holmes, C, et al. The biomechanics of pedicle screw augmentation with cement. Spine J. 2015;15:1432-1445. doi:10.1016/j.spinee.2015.03.016.
Google Scholar | Crossref | Medline8. Janssen, I, Ryang, YM, Gempt, J, et al. Risk of cement leakage and pulmonary embolism by bone cement-augmented pedicle screw fixation of the thoracolumbar spine. Spine J. 2017;17:837-844. doi:10.1016/j.spinee.2017.01.009.
Google Scholar | Crossref | Medline9. Phan, K, Hogan, J, Maharaj, M, Mobbs, RJ. Cortical Bone Trajectory for Lumbar Pedicle Screw Placement: A Review of Published Reports. Orthop Surg. 2015;7:213-221. doi:10.1111/os.12185.
Google Scholar | Crossref | Medline10. Matsukawa, K, Yato, Y, Imabayashi, H, et al. Biomechanical evaluation of fixation strength among different sizes of pedicle screws using the cortical bone trajectory: what is the ideal screw size for optimal fixation? Acta Neurochir. 2016;158:465-471. doi:10.1007/s00701-016-2705-8.
Google Scholar | Crossref | Medline11. Baluch, DA, Patel, AA, Lullo, B, et al. Effect of physiological loads on cortical and traditional pedicle screw fixation. Spine. 2014;39:E1297-E1302. doi:10.1097/brs.0000000000000553.
Google Scholar | Crossref | Medline | ISI12. Li, HM, Zhang, RJ, Gao, H, et al. Biomechanical Fixation Properties of the Cortical Bone Trajectory in the Osteoporotic Lumbar Spine. World Neurosurg. 2018;119:e717-e727. doi:10.1016/j.wneu.2018.07.253.
Google Scholar | Crossref | Medline13. Matsukawa, K, Yato, Y, Kato, T, Imabayashi, H, Asazuma, T, Nemoto, K. In vivo analysis of insertional torque during pedicle screwing using cortical bone trajectory technique. Spine. 2014;39:E240-E245. doi:10.1097/brs.0000000000000116.
Google Scholar | Crossref | Medline14. Akpolat, YT, İnceoğlu, S, Kinne, N, Hunt, D, Cheng, WK. Fatigue Performance of Cortical Bone Trajectory Screw Compared With Standard Trajectory Pedicle Screw. Spine. 2016;41:E335-E341. doi:10.1097/brs.0000000000001233.
Google Scholar | Crossref | Medline15. Chen, CH, Chen, DC, Huang, HM, et al. Level-based analysis of screw loosening with cortical bone trajectory screws in patients with lumbar degenerative disease. Medicine (Baltim). 2020;99:e22186. doi:10.1097/md.0000000000022186.
Google Scholar | Crossref | Medline16. Lamartina, C, Cecchinato, R, Fekete, Z, Lipari, A, Fiechter, M, Berjano, P. Pedicle screw placement accuracy in thoracic and lumbar spinal surgery with a patient-matched targeting guide: a cadaveric study. Eur Spine Jofficial publication of the European Spine Societythe European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society. 2015;24(suppl 7):937-941. doi:10.1007/s00586-015-4261-y.
Google Scholar | Crossref17. Dayani, F, Chen, YR, Johnson, E, et al. Minimally invasive lumbar pedicle screw fixation using cortical bone trajectory - Screw accuracy, complications, and learning curve in 100 screw placements. J Clin Neurosci. 2019;61:106-111. doi:10.1016/j.jocn.2018.10.131.
Google Scholar | Crossref | Medline18. Matsukawa, K, Taguchi, E, Yato, Y, et al. Evaluation of the fixation strength of pedicle screws using cortical bone trajectory: What is the ideal trajectory for optimal fixation? Spine. 2015;40:E873-E878. doi:10.1097/brs.0000000000000983.
Google Scholar | Crossref | Medline19. Lee, GW, Son, JH, Ahn, MW, Kim, HJ, Yeom, JS. The comparison of pedicle screw and cortical screw in posterior lumbar interbody fusion: a prospective randomized noninferiority trial. Spine J. 2015;15:1519-1526. doi:10.1016/j.spinee.2015.02.038.
Google Scholar | Crossref | Medline20. Matsukawa, K, Kaito, T, Abe, Y. Accuracy of cortical bone trajectory screw placement using patient-specific template guide system. Neurosurg Rev. 2020;43:1135-1142. doi:10.1007/s10143-019-01140-1.
Google Scholar | Crossref | Medline21. Santoni, BG, Hynes, RA, McGilvray, KC, et al. Cortical bone trajectory for lumbar pedicle screws. Spine J. 2009;9:366-373. doi:10.1016/j.spinee.2008.07.008.
Google Scholar | Crossref | Medline | ISI22. Liu, Y, Xu, J, Sun, D, Luo, F, Zhang, Z, Dai, F. Biomechanical and finite element analyses of bone cement-Injectable cannulated pedicle screw fixation in osteoporotic bone. J Biomed Mater Res B Appl Biomater. 2016;104:960-967. doi:10.1002/jbm.b.33424.
Google Scholar | Crossref | Medline23. Sun, H, Liu, C, Li, X, et al. A novel calcium phosphate-based nanocomposite for the augmentation of cement-injectable cannulated pedicle screws fixation: A cadaver and biomechanical study. J Orthop Translat. 2020;20:56-66. doi:10.1016/j.jot.2019.08.001.
Google Scholar | Crossref | Medline24. Weiser, L, Huber, G, Sellenschloh, K, et al. Time to augment?! Impact of cement augmentation on pedicle screw fixation strength depending on bone mineral density. Eur Spine J. 2018;27:1964-1971. 10.1007/s00586-018-5660-7.
Google Scholar | Crossref | Medline25. Liu, D, Sheng, J, Wu, HH, et al. Biomechanical study of injectable hollow pedicle screws for PMMA augmentation in severely osteoporotic lumbar vertebrae: effect of PMMA distribution and volume on screw stability. J Neurosurg Spine. 2018;29:639-646. doi:10.3171/2018.4.Spine171225.
Google Scholar | Crossref | Medline26. Tobing, SDAL, Wisnubaroto, RP. Pull-out strength comparison among conventional pedicle screw, cortical infero-superior, and cortical supero-inferior trajectories in yorkshire porcine lumbar spines: A biomechanical study. Internet J Spine Surg. 2020;14:580-584. doi:10.14444/7077.
Google Scholar | Crossref | Medline27. Charles, YP, Pelletier, H, Hydier, P, et al. Pullout characteristics of percutaneous pedicle screws with different cement augmentation methods in elderly spines: An in vitro biomechanical study. Orthop Traumatol Surg Res. 2015;101:369-374. doi:10.1016/j.otsr.2015.01.005.
Google Scholar | Crossref | Medline28. Pishnamaz, M, Lange, H, Herren, C, et al. The quantity of bone cement influences the anchorage of augmented pedicle screws in the osteoporotic spine: A biomechanical human cadaveric study. Clin Biomech. 2018;52:14-19. doi:10.1016/j.clinbiomech.2017.12.012.
Google Scholar | Crossref | Medline29. Liu, D, Sheng, J, Luo, Y, et al. Biomechanical comparative study of the stability of injectable pedicle screws with different lateral holes augmented with different volumes of polymethylmethacrylate in osteoporotic lumbar vertebrae. Spine J. 2018;18:1637-1644. doi:10.1016/j.spinee.2018.03.009.
Google Scholar | Crossref | Medline30. Jia, C, Zhang, R, Xing, T, et al. Biomechanical properties of pedicle screw fixation augmented with allograft bone particles in osteoporotic vertebrae: different sizes and amounts. Spine J. 2019;19:1443-1452. doi:10.1016/j.spinee.2019.04.013.
Google Scholar | Crossref | Medline31. Ohe, M, Moridaira, H, Inami, S, Takeuchi, D, Nohara, Y, Taneichi, H. Pedicle screws with a thin hydroxyapatite coating for improving fixation at the bone-implant interface in the osteoporotic spine: experimental study in a porcine model. J Neurosurg Spine. 2018;28:679-687. doi:10.3171/2017.10.Spine17702.
Google Scholar | Crossref | Medline32. Wang, Y, Yang, L, Li, C, Sun, H. The Biomechanical Properties of Cement-Augmented Pedicle Screws for Osteoporotic Spines. Global Spine J. 2021:2192568220987214. doi:10.1177/2192568220987214.
Google Scholar | SAGE Journals33. Ulusoy, OL, Kahraman, S, Karalok, I, et al. Pulmonary cement embolism following cement-augmented fenestrated pedicle screw fixation in adult spinal deformity patients with severe osteoporosis (analysis of 2978 fenestrated screws). Eur Spine Jand the European Section of the Cervical Spine Research Society. 2018;27:2348-2356. 10.1007/s00586-018-5593-1.
Google Scholar | Crossref | Medline

留言 (0)

沒有登入
gif