1.
Alentorn-Geli, E, Pelfort, X, Mingo, F, et al. An evaluation of the association between radiographic intercondylar notch narrowing and anterior cruciate ligament injury in men: the notch angle is a better parameter than notch width. Arthroscopy. 2015;31(10):2004-2013.
Google Scholar |
Crossref |
Medline2.
Bayer, S, Meredith, SJ, Wilson, KW, et al. Knee morphological risk factors for anterior cruciate ligament injury: a systematic review. J Bone Joint Surg Am. 2020;102(8):703-718.
Google Scholar |
Crossref |
Medline3.
Bojicic, KM, Beaulieu, ML, Imaizumi Krieger, DY, Ashton-Miller, JA, Wojtys, EM. Association between lateral posterior tibial slope, body mass index, and ACL injury risk. Orthop J Sports Med. 2017;5(2):2325967116688664.
Google Scholar |
SAGE Journals4.
Chen, C, Ma, Y, Geng, B, et al. Intercondylar notch stenosis of knee osteoarthritis and relationship between stenosis and osteoarthritis complicated with anterior cruciate ligament injury: a study in MRI. Medicine (Baltimore). 2016;95(17):e3439.
Google Scholar |
Crossref |
Medline5.
Fernández-Jaén, T, López-Alcorocho, JM, Rodriguez-Iñigo, E, Castellán, F, Hernández, JC, Guillén-García, P. The importance of the intercondylar notch in anterior cruciate ligament tears. Orthop J Sports Med. 2015;3(8):2325967115597882.
Google Scholar |
SAGE Journals6.
Geng, B, Wang, J, Ma, JL, et al. Narrow intercondylar notch and anterior cruciate ligament injury in female nonathletes with knee osteoarthritis aged 41-65 years in plateau region. Chin Med J (Engl). 2016;129(21):2540-2545.
Google Scholar |
Crossref |
Medline7.
Hashemi, J, Chandrashekar, N, Mansouri, H, et al. Shallow medial tibial plateau and steep medial and lateral tibial slopes: new risk factors for anterior cruciate ligament injuries. Am J Sports Med. 2010;38(1):54-62.
Google Scholar |
SAGE Journals |
ISI8.
Kızılgöz, V, Sivrioğlu, AK, Ulusoy, GR, Aydın, H, Karayol, SS, Menderes, U. Analysis of the risk factors for anterior cruciate ligament injury: an investigation of structural tendencies. Clin Imaging. 2018;50:20-30.
Google Scholar |
Crossref |
Medline9.
Landis, JR, Koch, GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33:159-174.
Google Scholar |
Crossref |
Medline |
ISI10.
Mather, RC, Koenig, L, Kocher, MS, et al. Societal and economic impact of anterior cruciate ligament tears. J Bone Joint Surg Am. 2013;95(19):1751-1759.
Google Scholar |
Crossref |
Medline |
ISI11.
McGrath, TM, Waddington, G, Scarvell, JM, et al. The effect of limb dominance on lower limb functional performance: a systematic review. J Sports Sci. 2016;34(4):289-302.
Google Scholar |
Crossref |
Medline12.
Park, JS, Nam, DC, Kim, DH, Kim, HK, Hwang, SC. Measurement of knee morphometrics using MRI: a comparative study between ACL-injured and non-injured knees. Knee Surg Relat Res. 2012;24(3):180-185.
Google Scholar |
Crossref |
Medline13.
Pfeiffer, TR, Burnham, JM, Hughes, JD, et al. An increased lateral femoral condyle ratio is a risk factor for anterior cruciate ligament injury. J Bone Joint Surg Am. 2018;100(10):857-864.
Google Scholar |
Crossref |
Medline14.
Raines, BT, Naclerio, E, Sherman, SL. Management of anterior cruciate ligament injury: what’s in and what’s out? Indian J Orthop. 2017;51(5):563-575.
Google Scholar |
Crossref |
Medline15.
Ruopp, MD, Perkins, NJ, Whitcomb, BW, Schisterman, EF. Youden index and optimal cut-point estimated from observations affected by a lower limit of detection. Biom J. 2008;50(3):419-430.
Google Scholar |
Crossref |
Medline16.
Samitier, G, Marcano, AI, Alentorn-Geli, E, Cugat, R, Farmer, KW, Moser, MW. Failure of anterior cruciate ligament reconstruction. Arch Bone Jt Surg. 2015;3(4):220-240.
Google Scholar |
Medline |
ISI17.
Sanders, TL, Maradit Kremers, H, Bryan, AJ, et al. Incidence of anterior cruciate ligament tears and reconstruction: a 21-year population-based study. Am J Sports Med. 2016;44(6):1502-1507.
Google Scholar |
SAGE Journals |
ISI18.
Serpell, BG, Scarvell, JM, Ball, NB, Smith, PN. Mechanisms and risk factors for noncontact ACL injury in age mature athletes who engage in field or court sports: a summary of the literature since 1980. J Strength Cond Res. 2012;26(11):3160-3176.
Google Scholar |
Crossref |
Medline |
ISI19.
Shen, L, Jin, ZG, Dong, QR, Li, LB. Anatomical risk factors of anterior cruciate ligament injury. Chin Med J (Engl). 2018;131(24):2960-2967.
Google Scholar |
Crossref |
Medline20.
Siebold, R, Axe, J, Irrgang, JJ, Li, K, Tashman, S, Fu, FH. A computerized analysis of femoral condyle radii in ACL intact and contralateral ACL reconstructed knees using 3D CT. Knee Surg Sports Traumatol Arthrosc. 2010;18(1):26-31.
Google Scholar |
Crossref |
Medline |
ISI21.
Simon, RA, Everhart, JS, Nagaraja, HN, Chaudhari, AM. A case-control study of anterior cruciate ligament volume, tibial plateau slopes and intercondylar notch dimensions in ACL-injured knees. J Biomech. 2010;43(9):1702-1707.
Google Scholar |
Crossref |
Medline |
ISI22.
Slattery, C, Kweon, CY. Classifications in brief: Outerbridge classification of chondral lesions. Clin Orthop Relat Res. 2018;476(10):2101-2104.
Google Scholar |
Crossref |
Medline23.
Smith, HC, Vacek, P, Johnson, RJ, et al. Risk factors for anterior cruciate ligament injury: a review of the literature, part 1. Neuromuscular and anatomic risk. Sports Health. 2012;4(1):69-78.
Google Scholar |
SAGE Journals24.
Stein, V, Li, L, Guermazi, A, et al. The relation of femoral notch stenosis to ACL tears in persons with knee osteoarthritis. Osteoarthritis Cartilage. 2010;18(2):192-199.
Google Scholar |
Crossref |
Medline25.
Sturnick, DR, Argentieri, EC, Vacek, PM, et al. A decreased volume of the medial tibial spine is associated with an increased risk of suffering an anterior cruciate ligament injury for males but not females. J Orthop Res. 2014;32(11):1451-1457.
Google Scholar |
Crossref |
Medline |
ISI26.
Sturnick, DR, Vacek, PM, DeSarno, MJ, et al. Combined anatomic factors predicting risk of anterior cruciate ligament injury for males and females. Am J Sports Med. 2015;43(4):839-847.
Google Scholar |
SAGE Journals |
ISI27.
Sturnick, DR, Van Gorder, R, Vacek, PM, et al. Tibial articular cartilage and meniscus geometries combine to influence female risk of anterior cruciate ligament injury. J Orthop Res. 2014;32(11):1487-1494.
Google Scholar |
Crossref |
Medline |
ISI28.
Uhorchak, JM, Scoville, CR, Williams, GN, Arciero, RA, St Pierre, P, Taylor, DC. Risk factors associated with noncontact injury of the anterior cruciate ligament: a prospective four-year evaluation of 859 West Point cadets. Am J Sports Med. 2003;31(6):831-842.
Google Scholar |
SAGE Journals |
ISI29.
van Melick, N, Meddeler, BM, Hoogeboom, TJ, Nijhuis-van, der, Sanden, MWG, van Cingel, REH. How to determine leg dominance: the agreement between self-reported and observed performance in healthy adults. PLoS One. 2017;12(12):e0189876.
Google Scholar |
Crossref |
Medline30.
Vasta, S, Andrade, R, Pereira, R, et al. Bone morphology and morphometry of the lateral femoral condyle is a risk factor for ACL injury. Knee Surg Sports Traumatol Arthrosc. 2018;26(9):2817-2825.
Google Scholar |
Crossref |
Medline31.
Wahl, CJ, Westermann, RW, Blaisdell, GY, Cizik, AM. An association of lateral knee sagittal anatomic factors with non-contact ACL injury: sex or geometry? J Bone Joint Surg Am. 2012;94(3):217-226.
Google Scholar |
Crossref |
Medline |
ISI32.
Whitney, DC, Sturnick, DR, Vacek, PM, et al. Relationship between the risk of suffering a first-time noncontact ACL injury and geometry of the femoral notch and ACL: a prospective cohort study with a nested case-control analysis. Am J Sports Med. 2014;42(8):1796-1805.
Google Scholar |
SAGE Journals |
ISI33.
Xiao, WF, Yang, T, Cui, Y, et al. Risk factors for noncontact anterior cruciate ligament injury: analysis of parameters in proximal tibia using anteroposterior radiography. J Int Med Res. 2016;44(1):157-163.
Google Scholar |
SAGE Journals |
ISI
留言 (0)