1. Debono, J, Bos, MHA, Do, MS, et al. Clinical implications of coagulotoxic variations in Mamushi (Viperidae: Gloydius) snake venoms. Comp Biochem Physiol C Toxicol Pharmacol 2019; 225: 108567.
Google Scholar |
Crossref |
Medline2. Fry, BG. Snakebite: When the human touch becomes a bad touch. Toxins (Basel) 2018; 10: 170.
Google Scholar |
Crossref3. Gutiérrez, JM, Calvete, JJ, Habib, AG, et al. Snakebite envenoming. Nat Rev Dis Primers 2017; 3: 17063.
Google Scholar |
Crossref |
Medline4. Kasturiratne, A, Wickremasinghe, AR, de Silva, N, et al. The global burden of snakebite: A literature analysis and modelling based on regional estimates of envenoming and deaths. PLoS Med 2008; 5: e218.
Google Scholar |
Crossref |
Medline |
ISI5. Casewell, NR, Wüster, W, Vonk, FJ, et al. Complex cocktails: The evolutionary novelty of venoms. Trends Ecol Evol 2013; 28: 219–229.
Google Scholar |
Crossref |
Medline |
ISI6. Fry, BG, Scheib, H, van der Weerd, L, et al. Evolution of an arsenal: Sstructural and functional diversification of the venom system in the advanced snakes (Caenophidia). Mol Cell Proteomics 2008; 7: 215–246.
Google Scholar |
Crossref |
Medline7. Slagboom, J, Kool, J, Harrison, RA, et al. Haemotoxic snake venoms: Their functional activity, impact on snakebite victims and pharmaceutical promise. Br J Haematol 2017; 177: 947–959.
Google Scholar |
Crossref |
Medline8. Blessmann, J, Nguyen, TPN, Bui, TPA, et al. Incidence of snakebites in 3 different geographic regions in Thua Thien Hue province, central Vietnam: Green pit vipers and cobras cause the majority of bites. Toxicon 2018; 156: 61–65.
Google Scholar |
Crossref |
Medline9. White, J. Snake venoms and coagulopathy. Toxicon 2005; 45: 951–967.
Google Scholar |
Crossref |
Medline10. Valenta, J, Stach, Z, Porizka, M, et al. Analysis of hemocoagulation tests for prediction of venom-induced consumption coagulopathy development after Viperidae bite. Bratisl Lek Listy 2019; 120: 566–568.
Google Scholar |
Medline11. Maduwage, K, Isbister, GK. Current treatment for venom-induced consumption coagulopathy resulting from snakebite. PLoS Negl Trop Dis 2014; 8: e3220.
Google Scholar |
Crossref |
Medline12. Markland, FS. Snake venoms and the hemostatic system. Toxicon 1998; 36: 1749–1800.
Google Scholar |
Crossref |
Medline |
ISI13. Luddington, RJ. Thrombelastography/thromboelastometry. Clin Lab Haematol 2005; 27: 81–90.
Google Scholar |
Crossref |
Medline14. Haas, T, Görlinger, K, Grassetto, A, et al. Thromboelastometry for guiding bleeding management of the critically ill patient: A systematic review of the literature. Minerva Anestesiol 2014; 80: 1320–1335.
Google Scholar |
Medline15. Schöchl, H, Nienaber, U, Hofer, G, et al. Goal-directed coagulation management of major trauma patients using thromboelastometry (ROTEM)-guided administration of fibrinogen concentrate and prothrombin complex concentrate. Crit Care 2010; 14: R55.
Google Scholar |
Crossref |
Medline |
ISI16. Crochemore, T, Piza, FMT, Rodrigues, RDR, et al. A new era of thromboelastometry. Einstein (Sao Paulo) 2017; 15: 380–385.
Google Scholar |
Crossref |
Medline17. Larréché, S, Jean, FX, Benois, A, et al. Thromboelastographic study of the snakebite-related coagulopathy in Djibouti. Blood Coagul Fibrinolysis 2018; 29: 196–204.
Google Scholar |
Crossref |
Medline18. Cao, D, Domanski, K, Hodgman, E, et al. Thromboelastometry analysis of severe North American pit viper-induced coagulopathy: A case report. Toxicon 2018; 151: 29–33.
Google Scholar |
Crossref |
Medline19. Kang, AM, Fisher, ES. Thromboelastography with platelet studies (TEG® with PlateletMapping®) after rattlesnake envenomation in the southwestern United States demonstrates inhibition of ADP-induced platelet activation as well as clot lysis. J Med Toxicol 2020; 16: 24–32.
Google Scholar |
Crossref |
Medline20. Theusinger, OM, Schröder, CM, Eismon, J, et al. The influence of laboratory coagulation tests and clotting factor levels on totation yhromboelastometry (ROTEM®) during major surgery with hemorrhage. Anesth Analg 2013; 117: 314–321.
Google Scholar |
Crossref |
Medline21. Haas, T, Spielmann, N, Mauch, J, et al. Comparison of thromboelastometry (ROTEM®) with standard plasmatic coagulation testing in paediatric surgery. Br J Anaesth 2012; 108: 36–41.
Google Scholar |
Crossref |
Medline |
ISI22. Mann, KG, Brummel, K, Butenas, S. What is all that thrombin for? J Thromb Haemost 2003; 1: 1504–1514.
Google Scholar |
Crossref |
Medline |
ISI23. Prüller, F, Münch, A, Preininger, A, et al. Comparison of functional fibrinogen (FF/CFF) and FIBTEM in surgical patients – A retrospective study. Clin Chem Lab Med 2016; 54: 453–458.
Google Scholar |
Crossref |
Medline |
ISI24. Fenger-Eriksen, C, Moore, GW, Rangarajan, S, et al. Fibrinogen estimates are influenced by methods of measurement and hemodilution with colloid plasma expanders. Transfusion 2010; 50: 2571–2576.
Google Scholar |
Crossref |
Medline |
ISI25. Schlimp, CJ, Khadem, A, Klotz, A, et al. Rapid measurement of fibrinogen concentration in whole blood using a steel ball coagulometer. J Trauma Acute Care Surg 2015; 78: 830–836.
Google Scholar |
Crossref |
Medline26. Benes, J, Zatloukal, J, Kletecka, J. Viscoelastic methods of blood clotting assessment – A multidisciplinary review. Front Med (Lausanne) 2015; 2: 62–62.
Google Scholar |
Medline27. Schöchl, H, Cotton, B, Inaba, K, et al. FIBTEM provides early prediction of massive transfusion in trauma. Crit Care 2011; 15: R265.
Google Scholar |
Crossref |
Medline28. Haas, T, Fries, D, Tanaka, KA, et al. Usefulness of standard plasma coagulation tests in the management of perioperative coagulopathic bleeding: Is there any evidence? Br J Anaesth 2015; 114: 217–224.
Google Scholar |
Crossref |
Medline29. Lang, T, von Depka, M. [ Possibilities and limitations of thrombelastometry/-graphy]. Hamostaseologie 2006; 26: S20–S29.
Google Scholar |
Medline
留言 (0)