1.
Claxton, K . The irrelevance of inference: a decision-making approach to stochastic evaluation of health care technologies. J Health Econ. 1999;8:342–64.
Google Scholar2.
Basu, A, Meltzer, D. Value of information on preference heterogeneity and individualized care. Med Decis Making. 2007;27(2):112–27.
Google Scholar |
SAGE Journals3.
Sculpher, M . Subgroups and heterogeneity in cost-effectiveness analysis. Pharmacoeconomics. 2008;26(9):799–806.
Google Scholar |
Crossref |
Medline |
ISI4.
Coyle, D, Buxton, M, O’Brien, B. Stratified cost-effectiveness analysis: a framework for establishing efficient limited use criteria. Health Econ. 2003;12(5):421–7.
Google Scholar |
Crossref5.
Minelli, C, Baio, G. Value of information: a tool to improve research prioritization and reduce waste. PLoS Med. 2015;12(9):e1001882.
Google Scholar |
Crossref |
Medline6.
Schlaifer, R . Probability and Statistics for Business Decisions. New York: McGraw-Hill; 1959.
Google Scholar7.
Raiffa, H, Schlaifer, H. Applied Statistical Decision Theory. Boston: Harvard University Press; 1961.
Google Scholar8.
Claxton, K . Bayesian approaches to the value of information: implications for the regulation of new pharmaceutical. Health Econ. 1999;8:269–74.
Google Scholar |
Crossref9.
Claxton, K, Neumann, P, Araki, S, Weinstein, M. Bayesian value-of-information analysis. Int J Technol Assess Health Care. 2001;17:38–55.
Google Scholar |
Crossref |
Medline |
ISI10.
Ades, A, Lu, G, Claxton, K. Expected value of sample information calculations in medical decision modeling. Med Decis Making. 2004;24:207–27.
Google Scholar |
SAGE Journals11.
Felli, J, Hazen, G. Sensitivity analysis and the expected value of perfect information. Med Decis Making. 1998;18:95–109.
Google Scholar |
SAGE Journals |
ISI12.
Heath, A, Hunink, M, Krijkamp, E, Pechlivanoglou, P. Prioritisation and design of clinical trials. Eur J Epidemiol. 2021;36:1111–21.
Google Scholar |
Crossref |
Medline13.
Stinnett, A, Mullahy, J. Net health benefits a new framework for the analysis of uncertainty in cost-effectiveness analysis. Med Decis Making. 1998;18(2):S68–80.
Google Scholar |
SAGE Journals |
ISI14.
Willan, A, Eckermann, S. Optimal clinical trial design using value of information methods with imperfect implementation. Health Econ. 2010;19(5):549–61.
Google Scholar |
Medline15.
Fenwick, E, Claxton, K, Sculpher, M. The value of implementation and the value of information: combined and uneven development. Med Decis Making. 2008;28(1):21–32.
Google Scholar |
SAGE Journals |
ISI16.
Espinoza, M, Manca, A, Claxton, K, Sculpher, M. The value of heterogeneity for cost-effectiveness subgroup analysis: conceptual framework and application. Med Decis Making. 2014;34(8):951–64.
Google Scholar |
SAGE Journals17.
Agusti, A . The path to personalised medicine in copd. Thorax. 2014;69(9):857–64.
Google Scholar |
Crossref18.
Jackson, S, Chester, J. Personalised cancer medicine. Int J Cancer. 2015;137(2):262–6.
Google Scholar |
Crossref |
Medline19.
Isaacs, J, Ferraccioli, G. The need for personalised medicine for rheumatoid arthritis. Ann Rheum Dis. 2011;70(1):4–7.
Google Scholar |
Crossref |
Medline20.
Briggs, A, Weinstein, M, Fenwick, E, Karnon, J, Sculpher, M, Paltiel, A; ISPOR-SMDM Modeling Good Research Practices Task Force et al. Model parameter estimation and uncertainty: a report of the ISPOR-SMDM Modeling Good Research Practices Task Force-6. Value Health. 2012;15(6):835–42.
Google Scholar |
Crossref21.
Krijkamp, E, Alarid-Escudero, F, Enns, E, Jalal, H, Hunink, M, Pechlivanoglou, P. Microsimulation modeling for health decision sciences using r: a tutorial. Med Decis Making. 2018;38(3):400–22.
Google Scholar |
SAGE Journals22.
Sculpher, MJ, Claxton, K, Drummond, M, McCabe, C. Whither trial-based economic evaluation for health care decision making? Health Econ. 2006;15(7):677–87.
Google Scholar |
Crossref23.
Iman, R, Conover, W. A distribution-free approach to inducing rank correlation among input variables. Commun Stat Simulat Comput. 1982;11(3):311–34.
Google Scholar |
Crossref24.
Ruscio, J, Kaczetow, W. Simulating multivariate nonnormal data using an iterative algorithm. Multivariate Behav Res. 2008;43(3):355–81.
Google Scholar |
Crossref |
Medline25.
Liu, CW . SimJoint: Simulate Joint Distribution. R package version 0.3.7. 2020.
Google Scholar26.
Strong, M, Oakley, J, Brennan, A. Estimating multiparameter partial expected value of perfect information from a probabilistic sensitivity analysis sample: a nonparametric regression approach. Med Decis Making. 2014;34(3):311–26.
Google Scholar |
SAGE Journals27.
Claxton, K, Sculpher, M, McCabe, C, et al. Probabilistic sensitivity analysis for NICE technology assessment: not an optional extra. Health Econ. 2005;14:339–47.
Google Scholar |
Crossref |
Medline28.
Strong, M, Oakley, J, Brennan, A, Breeze, P. Estimating the expected value of sample information using the probabilistic sensitivity analysis sample: a fast nonparametric regression-based method. Med Decis Making. 2015;35(5):570–83.
Google Scholar |
SAGE Journals29.
Heath, A, Manolopoulou, I, Baio, G. Estimating the expected value of partial perfect information in health economic evaluations using integrated nested laplace approximation. Stat Med. 2016;35(23):4264–80.
Google Scholar |
Crossref |
Medline30.
Menzies, N . An efficient estimator for the expected value of sample information. Med Decis Making. 2016;36(3):308–20.
Google Scholar |
SAGE Journals31.
Jalal, H, Alarid-Escudero, F. A Gaussian approximation approach for value of information analysis. Med Decis Making. 2017;38(3):174–88.
Google Scholar |
Medline32.
Heath, A, Baio, G. Calculating the expected value of sample information using efficient nested Monte Carlo: a tutorial. Value in Health, 2018;21(11):1299-1304.
Google Scholar |
Crossref |
Medline33.
Koffijberg, H, Rothery, C, Chalkidou, K, Grutters, J. Value of information choices that influence estimates: a systematic review of prevailing considerations. Med Decis Making. 2018;38(7):888–900.
Google Scholar |
SAGE Journals |
ISI
留言 (0)