1.
Acute Respiratory Distress Syndrome Network . Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1301-1308. doi:
10.1056/NEJM200005043421801. Google Scholar |
Crossref |
Medline |
ISI2.
Ammar, MA, Bauer, SR, Bass, SN, Sasidhar, M, Mullin, R, Lam, SW. Noninferiority of inhaled epoprostenol to inhaled nitric oxide for the treatment of ARDS. Ann Pharmacother. 2015;49(10):1105-1112. doi:
10.1177/1060028015595642. Google Scholar |
SAGE Journals |
ISI3.
Buckley, M, Dzierba, A, Muir, J, Gonzales, JP. Moderate to severe acute respiratory distress syndrome management strategies: a narrative review. J Pharm Pract. 2019;32(3):347-360. doi:
10.1177/0897190019830504. Google Scholar |
SAGE Journals |
ISI4.
ARDS Definition Task Force ,Ranieri, VM, Rubenfel, GD, et al Acute respiratory distress syndrome: Berlin definition. JAMA. 2012;307(23):2526-2533. doi:
10.1001/jama.2012.5669. Google Scholar |
Crossref |
Medline |
ISI5.
Allen, G, Parsons, P. Acute respiratory failure due to acute respiratory distress syndrome and pulmonary edema. In: Irwin, R , ed. Irwin and Rippe’s Intensive Care Medicine. 8th ed. Wolters Kluewer Health/Lippincot Williams & Wilkins; 2017:1453-1644.
Google Scholar6.
Shafeeq, H, Lat, I. Pharmacotherapy for acute respiratory distress syndrome. Pharmacotherapy. 2012;32(10):943-957. doi:
10.1002/j.1875-9114.2012.01115. Google Scholar |
Crossref |
Medline7.
Thompson, BT, Chambers, RC, Liu, KD. Acute respiratory distress syndrome. N Engl J Med. 2017;377(6):562-572. doi:
10.1056/NEJMra1608077. Google Scholar |
Crossref |
Medline8.
Guerin, C, Reignier, J, Richard, JC, et al Prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013;368(23):2159-2168. doi:
10.1056/NEJMoa1214103. Google Scholar |
Crossref |
Medline |
ISI9.
National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome Clinical Trials Network ,Wiedemann, HP, Wheeler, AP, et al Comparison of two fluid-management strategies in acute lung injury. N Engl J Med. 2006;354(24):2564-2575. doi:
10.1056/NEJMoa062200. Google Scholar |
Crossref |
Medline |
ISI10.
Papazian, L, Forel, JM, Gacouin, A, et al ACURASYS Study Investigators . Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med. 2010;363:1107-1116. doi:
10.1056/NEJMoa1005372. Google Scholar |
Crossref |
Medline |
ISI11.
National Heart, Lung and Blood Institute PETAL Clinical Trials Network ,Moss, M, Huang, DT, et al Early neuromuscular blockade in the acute respiratory distress syndrome. N Engl J Med. 2019;380(21):1997-2008. doi:
10.1056/NEJMoa1901686. Google Scholar |
Crossref |
Medline12.
Villar, J, Ferrando, C, Martínez, D, et al dexamethasone in ARDS network . Dexamethasone treatment for the acute respiratory distress syndrome: a multicentre, randomised controlled trial. Lancet Respir Med. 2020;8(3):267-276. doi:
10.1016/S2213-2600(19)30417-5.
Google Scholar |
Crossref |
Medline13.
Steinberg, KP, Hudson, LD, Goodman, RB, et al National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome Clinical Trials Network . Efficacy and safety of corticosteroids for persistent acute respiratory distress syndrome. N Engl J Med. 2006;354(16):1671-1684. doi:
10.1056/NEJMoa051693. Google Scholar |
Crossref |
Medline |
ISI14.
van Heerden, PV, Barden, A, Michalopoulos, N, Bulsara, MK, Roberts, BL. Dose-response to inhaled aerosolized prostacyclin for hypoxemia due to ARDS. Chest. 2000;117(3):819-827. doi:
10.1378/chest.117.3.819. Google Scholar |
Crossref |
Medline15.
Fuller, BM, Mohr, NM, Skrupky, L, Fowler, S, Kollef, MH, Carpenter, CR. The use of inhaled prostaglandins in patients with ARDS: a systematic review and meta-analysis. Chest. 2015;147(6):1510-1522. doi:
10.1378/chest.14-3161. Google Scholar |
Crossref |
Medline16.
Torbic, H, Szumita, PM, Anger, KE, Nuccio, P, LaGambina, S, Weinhouse, G. Inhaled epoprostenol vs inhaled nitric oxide for refractory hypoxemia in critically ill patients. J Crit Care. 2013;28:844-848. doi:
10.1016/j.jcrc.2013.03.006. Google Scholar |
Crossref |
Medline |
ISI17.
Tabrizi, MB, Schinco, MA, Tepa, JJ, Hwang, J, Spiwak, E, Kerwin, AJ. Inhaled epoprostenol improves oxygenation in severe hypoxemia [published correction appears in J Trauma Acute Care Surg. 2012;73(5):1354]. J Trauma Acute Care Surg. 2012;73(2):503-506. doi:
10.1097/ta.0b013e318258431e.
Google Scholar |
Crossref |
Medline18.
Sonti, R, Pike, CW, Cobb, N. Responsiveness of inhaled epoprostenol in respiratory failure due to COVID-19. J Intensive Care Med. 2021;36(3):327-333. doi:
10.1177/0885066620976525.
Google Scholar |
SAGE Journals |
ISI19.
DeGrado, JR, Szumita, PM, Schuler, BR, et al Evaluation of the efficacy and safety of inhaled epoprostenol and inhaled nitric oxide for refractory hypoxemia in patients with coronavirus disease 2019. Crit Care Explor. 2020;2:e0259. doi:
10.1097/CCE.0000000000000259. Google Scholar |
Crossref20.
Li, J, Fink, JF, Augustynovich, AE, Mirza, S, Kallet, RH, Dhand, R. Effects of inhaled epoprostenol and prone positioning in intubated coronavirus disease 2019 patients with refractory hypoxemia. Crit Care Explor. 2020;2:e0307. doi:
10.1097/CCE.0000000000000307.
Google Scholar |
Crossref21.
Ammar, M, Gu, S, Jiang, W, et al 9: evaluation of aerosolized epoprostenol in COVID-19 ARDS patients. Crit Care Med. 2021;49(1):5. doi:
10.1097/01.ccm.0000726064.02960.52.
Google Scholar |
Crossref22.
Chiumello, D, Busana, M, Coppola, S, et al Physiologic and quantitative CT-san characterization of COVID-19 and typical ARDS: a matched cohort study. Intensive Care Med. 2020;46:2187-2196. doi:
10.1007/s00134-020-06281-2.
Google Scholar |
Crossref |
Medline23.
Grasselli, G, Tonetti, T, Protti, A, et al Pathophysiology of COVID-19 associated acute respiratory distress syndrome: a multicentre prospective observational study. Lancet Respir Med. 2020;8(12):1201-1208. doi:
10.1016/S2213-2600(20)30370-2.
Google Scholar |
Crossref |
Medline24.
Hariri, LP, North, CM, Shih, AR, et al Lung histopathology in coronavirus disease 2019 as compared with severe acute respiratory sydrome and H1N1 influenza: a systematic review. Chest. 2021;159(1):73-84. doi:
10.1016/j.chest.2020.09.259.
Google Scholar |
Crossref |
Medline25.
Severinghaus, JW . Simple, accurate equations for human blood O2 dissociation computations. J Appl Physiol Respir Environ Exerc Physiol. 1979;46(3):599-602. doi:
10.1152/jappl.1979.46.3.599. Google Scholar |
Crossref |
Medline26.
Buckley, MS, Agarwal, SK, Garcia-Orr, R, Saggar, R, MacLaren, R. Comparison of fixed-dose inhaled epoprostenol and inhaled nitric oxide for acute respiratory distress syndrome in critically ill adults. J Intensive Care Med. 2021;36(4):466-476. doi:
10.1177/0885066620906800.
Google Scholar |
SAGE Journals |
ISI27.
Dunkley, KA, Louzon, PR, Lee, J, Vu, S. Efficacy, safety and medication errors associated with the use of inhaled epoprostenol for adults with acute respiratory distress syndrome: a pilot study. Ann Pharmacother. 2013;47(6):790-796. doi:
10.1345/aph.1R540.
Google Scholar |
SAGE Journals |
ISI28.
Kallet, RH, Burns, G, Zhuo, H, et al Severity of hypoxemia and other factors that influence the response to aerosolized prostacyclin in ARDS. Respir Care. 2017;62(8):1014-1022. doi:
10.4187/respcare.05268. Google Scholar |
Crossref |
Medline29.
Seymour, CW, Liu, VX, Iwashyna, TJ, et al Assessment of clinical criteria for sepsis: for the third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA. 2016;315(8):762-774. doi:
10.1001/jama.2016.0288.
Google Scholar |
Crossref |
Medline |
ISI
留言 (0)