miR-466 Contributes to the Enhanced Antitumor Effect of Bortezomib on Non-Small-Cell Lung Cancer by Inhibiting CCND1

Log in to MyKarger to check if you already have access to this content.

Buy FullText & PDF Unlimited re-access via MyKarger Unrestricted printing, no saving restrictions for personal use read more

CHF 38.00 *
EUR 35.00 *
USD 39.00 *

Select

KAB

Buy a Karger Article Bundle (KAB) and profit from a discount!

If you would like to redeem your KAB credit, please log in.

Save over 20% compared to the individual article price.

Learn more

Rent/Cloud Rent for 48h to view Buy Cloud Access for unlimited viewing via different devices Synchronizing in the ReadCube Cloud Printing and saving restrictions apply Rental: USD 8.50
Cloud: USD 20.00

Select

Subscribe Access to all articles of the subscribed year(s) guaranteed for 5 years Unlimited re-access via Subscriber Login or MyKarger Unrestricted printing, no saving restrictions for personal use read more

Subcription rates

Select

* The final prices may differ from the prices shown due to specifics of VAT rules.

Article / Publication Details

First-Page Preview

Abstract of Antimicrobial Section / Original Paper

Received: April 27, 2021
Accepted: August 08, 2021
Published online: January 18, 2022

Number of Print Pages: 12
Number of Figures: 5
Number of Tables: 1

ISSN: 0009-3157 (Print)
eISSN: 1421-9794 (Online)

For additional information: https://www.karger.com/CHE

Abstract

Introduction: Changes in microRNAs (miRs) contribute to the alternative chemo-resistance of cancers. Bortezomib (BTZ) is a well-characterized anticancer agent that inhibits proteasome, and its effect is associated with the function of miRs. Based on the data of microarray assay and comprehensive bioinformatics analyses, in the current study, we explored the role of miR-466 and its downstream effector CCND1 in the BTZ-resistance of non-small-cell lung cancer (NSCLC) cells. Methods: miR expression profiles in NSCLC tissues and paratumor tissues were determined with microarray assay. The potential miR involved in the chemo-resistance of NSCLC cells was explored via a series of bioinformatics analyses, and miR-466 was selected. Afterward, levels of miR-466 and CCND1 were investigated in NSCLC samples and analyzed by clinicopathologic parameters, including age, sex, stage of NSCLC, tumor size, tumor differentiation status, and lymphocytic infiltration status. The expression of CCND1 and miR-466 was then modulated in vitro to explore the influence on cell phenotypes, which was then verified with mouse models. Results: Based on microarray detection, 287 miRs were dysexpressed between NSCLC tissues and paratumor tissues, including 90 upregulated members and 197 downregulated members. After bioinformatics analyses and reverse transcription quantitative PCR validation, miR-466 and CCND1 were selected. Following clinical investigations, miR-466 was downregulated, while CCND1 was upregulated in NSCLC samples, contributing to the advanced cancer progression. The overexpression of CCND1 increased cell viability, suppressed cell apoptosis, decreased p21 and induced N-cadherin, CCND2, and CDK4 under BTZ treatment. The induced expression of miR-466 re-sensitized NSCLC cells to BTZ treatment. In the animal model, the overexpression of CCND1 impaired the inhibitory effect of BTZ on the growth and metastasis of solid tumor, which was restored by miR-466 induction. Conclusion: The findings showed that the interaction between BTZ, miR-466, and CCND1 determined the antitumor effect of BTZ on NSCLC.

© 2022 S. Karger AG, Basel

References Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018 Nov;68(6):394–424. Fumarola C, Bonelli MA, Petronini PG, Alfieri RR. Targeting PI3K/AKT/mTOR pathway in non small cell lung cancer. Biochem Pharmacol. 2020;90(3):197–207. Kamangar F, Dores GM, Anderson WF. Patterns of cancer incidence, mortality, and prevalence across five continents: defining priorities to reduce cancer disparities in different geographic regions of the world. J Clin Oncol. 2006;24(14):2137–50. Groome PA, Bolejack V, Crowley JJ, Kennedy C, Krasnik M, Sobin LH, et al. The IASLC lung cancer staging project: validation of the proposals for revision of the T, N, and M descriptors and consequent stage groupings in the forthcoming (seventh) edition of the TNM classification of malignant tumours. J Thorac Oncol. 2007;2(8):694–705. Tundo GR, Sbardella D, Santoro AM, Coletta A, Oddone F, Grasso G, et al. The proteasome as a druggable target with multiple therapeutic potentialities: cutting and non-cutting edges. Pharmacol Ther. 2020 Sep;213:107579. Chen D, Frezza M, Schmitt S, Kanwar J, Dou QP. Bortezomib as the first proteasome inhibitor anticancer drug: current status and future perspectives. Curr Cancer Drug Targets. 2011;11(3):239–53. Laubach J, Richardson P. Hematology: bortezomib and dexamethasone induction for multiple myeloma. Nat Rev Clin Oncol. 2011;8(1):8–10. Kane RC, Dagher R, Farrell A, Ko CW, Sridhara R, Justice R, et al. Bortezomib for the treatment of mantle cell lymphoma. Clin Cancer Res. 2007;13(18):5291–4. Koprivnikar JL, Cheson BD. Bortezomib: a proteasome inhibitor with an evolving role in select subtypes of B-cell non-Hodgkin’s lymphoma. Future Oncol. 2012;8(4):359–71. Piperdi B, Walsh WV, Bradley K, Zhou Z, Bathin V, HanrahanBoshes M, et al. Phase-I/II Study of Bortezomib in combination with carboplatin and bevacizumab as first-line therapy in patients with advanced non–small-cell lung ccancer. J Thorac Oncol. 2012 Jun;7(6):1032–40. Ando M, Hoyos V, Yagyu S, Tao W, Ramos CA, Dotti G, et al. Bortezomib sensitizes non-small cell lung cancer to mesenchymal stromal cell-delivered inducible caspase-9-mediated cytotoxicity. Cancer Gene Ther. 2014;21(11):472–82. Hoang T, Campbell TC, Zhang C, Kim K, Kolesar JM, Oettel KR, et al. Vorinostat and bortezomib as third-line therapy in patients with advanced non-small cell lung cancer: a wisconsin oncology network Phase II study. Invest New Drugs. 2014;32(1):195–9. Besse B, Planchard D, Veillard AS, Taillade L, Khayat D, Ducourtieux M, et al. Phase 2 study of frontline bortezomib in patients with advanced non-small cell lung cancer. Lung Cancer. 2012;76(1):78–83. Li T, Ho L, Piperdi B, Elrafei T, Camacho FJ, Rigas JR, et al. Phase II study of the proteasome inhibitor bortezomib (PS-341, Velcade®) in chemotherapy-naïve patients with advanced stage non-small cell lung cancer (NSCLC). Lung Cancer. 2010;68(1):89–93. Wu G, Li H, Ji Z, Jiang X, Lei Y, Sun M. Inhibition of autophagy by autophagic inhibitors enhances apoptosis induced by bortezomib in non-small cell lung cancer cells. Biotechnol Lett. 2014;36(6):1171–8. Li C, Hu J, Li W, Song G, Shen J. Combined bortezomib-based chemotherapy and p53 gene therapy using hollow mesoporous silica nanospheres for p53 mutant non-small cell lung cancer treatment. Biomater Sci. 2016 Dec 20;5(1):77–88. Cao W, Fang L, Teng S, Chen H, Liu T. MicroRNA-466 inhibits osteosarcoma cell proliferation and induces apoptosis by targeting CCND1. Exp Ther Med. 2018;16(6):5117–22. Tong F, Ying Y, Pan H, Zhao W, Li H, Zhan X. MicroRNA-466 (miR-466) functions as a tumor suppressor and prognostic factor in colorectal cancer (CRC). Bosn J Basic Med Sci. 2018;18(3):252. Colden M, Dar AA, Saini S, Dahiya PV, Shahryari V, Yamamura S, et al. MicroRNA-466 inhibits tumor growth and bone metastasis in prostate cancer by direct regulation of osteogenic transcription factor RUNX2. Cell Death Dis. 2017;8(1):e2572. Liu B, Zhang Y, Jin M, Ni Q, Liang X, Ma X, et al. Association of selected polymorphisms of CCND1, p21, and caspase8 with colorectal cancer risk. Mol Carcinog. 2010;49(1):75–84. Fan CW, Chan CC, Chao CC, Fan HA, Sheu DL, Chan EC. Expression patterns of cell cycle and apoptosis-related genes in a multidrug-resistant human colon carcinoma cell line. Scand J Gastroenterol. 2004;39(5):464–9. Hutter G, Rieken M, Pastore A, Weigert O, Zimmermann Y, Weinkauf M, et al. The proteasome inhibitor bortezomib targets cell cycle and apoptosis and acts synergistically in a sequence-dependent way with chemotherapeutic agents in mantle cell lymphoma. Ann Hematol. 2012;91(6):847–56. Mehdizadeh K, Ataei F, Hosseinkhani S. Treating MCF7 breast cancer cell with proteasome inhibitor Bortezomib restores apoptotic factors and sensitizes cell to Docetaxel. Med Oncol. 2021 Apr 27;38(6):64. Betticher DC, Heighway J, Hasleton PS, Altermatt HJ, Ryder WD, Cerny T, et al. Prognostic significance of CCND1 (cyclin D1) overexpression in primary resected non-small-cell lung cancer. Br J Cancer. 1996;73(3):294–300. Sun C, Huang C, Li S, Yang C, Xi Y, Wang L, et al. Hsa-miR-326 targets CCND1 and inhibits non-small cell lung cancer development. Oncotarget. 2016;7(7):8341–59. Lu C, Munoz-Antonia T, Cress WD, de Wever O. Trim28 contributes to EMT via regulation of e-cadherin and n-cadherin in lung cancer cell lines. PLoS One. 2014;9(7):e101040. Article / Publication Details

First-Page Preview

Abstract of Antimicrobial Section / Original Paper

Received: April 27, 2021
Accepted: August 08, 2021
Published online: January 18, 2022

Number of Print Pages: 12
Number of Figures: 5
Number of Tables: 1

ISSN: 0009-3157 (Print)
eISSN: 1421-9794 (Online)

For additional information: https://www.karger.com/CHE

留言 (0)

沒有登入
gif