Thyroid hormones play an important role in the central and peripheral nervous system functions. Approximately 50% of adult-onset hypothyroid patients have sensory symptoms including pain, possibly caused by peripheral neuropathy. However, the mechanism causing the pain has not been clarified. We generated an adult-onset hypothyroid model animal by administering 50 ppm propylthiouracil (PTU) for 5 weeks to male mice. Female mice were not tested in this study. Mechanical hypersensitivity, determined by the von Frey hair test, was observed during the PTU exposure and recovered after the exposure termination. The sciatic nerve compound action potential was also analyzed. Under single-pulse stimulation, no significant change in the threshold and conduction velocity was observed in the PTU-administered group. On the other hand, under train-pulse stimulation, the latency delay in the Aδ-fiber component was less in the PTU-administered group in Week 4 of PTU exposure, indicating relative hyperexcitability. Fluticasone, which is the anti-inflammatory agent with an ability to activate the voltage-gated potassium channel subfamily A (Kv1), restored the decrease in the latency change ratio by PTU exposure under the train-pulse stimulation supporting our hypothesis that Kv1 may be involved in the conductivity change. Kv1.1 protein level decreased significantly in the sciatic nerve of the PTU-administered group. These results indicate that adult-onset hypothyroidism causes mechanical hypersensitivity owing to hyperexcitability of the peripheral nerve and that reduction of Kv1.1 level may be involved in such alteration.
留言 (0)