Ahrens, A., Lund, K. D., Marschall, M., Dau, T. (2019). “Sound source localization with varying amount of visual information in virtual reality,” (M. S. Malmierca, Ed.). PLoS ONE, 14(3), e0214603.
https://doi.org/10.1371/journal.pone.0214603 Google Scholar |
Crossref |
Medline Alary, B., Masse, P., Valimaki, V., Noisternig, M. (2019). Assessing the Anisotropic Features of Spatial Impulse Responses. EAA Spatial Audio Signal Processing Symposium, Sep 2019, Paris, France. pp.43-48, (hal-02275194).
https://doi.org/10.25836/SASP.2019.32 Google Scholar Allen, J. B., Berkley, D. A. (1979). Image method for efficiently simulating small-room acoustics. The Journal of the Acoustical Society of America, 65(4), 943–950.
https://doi.org/10.1121/1.382599 Google Scholar |
Crossref |
ISI Blauert, J., Lindemann, W. (1986). Auditory spaciousness: Some further psychoacoustic analyses. The Journal of the Acoustical Society of America, 80(2), 533–542.
https://doi.org/10.1121/1.394048 Google Scholar |
Crossref |
Medline |
ISI Borish, J. (1984). Extension of the image model to arbitrary polyhedra. The Journal of the Acoustical Society of America, 75(6), 1827–1836.
https://doi.org/10.1121/1.390983 Google Scholar |
Crossref Brinkmann, F., Aspöck, L., Ackermann, D., Lepa, S., Vorländer, M., Weinzierl, S. (2019). A round robin on room acoustical simulation and auralization. The Journal of the Acoustical Society of America, 145(4), 2746–2760.
https://doi.org/10.1121/1.5096178 Google Scholar |
Crossref |
Medline Brughera, A., Dunai, L., Hartmann, W. M. (2013). Human interaural time difference thresholds for sine tones: The high-frequency limit. The Journal of the Acoustical Society of America, 133(5), 2839–2855.
https://doi.org/10.1121/1.4795778 Google Scholar |
Crossref |
Medline BS.2159-8 (2019). Multichannel sound technology in home and broadcasting applications. International Telecommunication Union. https://www.itu.int/dms_pub/itu-r/opb/rep/R-REP-BS.2159-8-2019-PDF-E.pdf.
Google Scholar Cook, R. K., Waterhouse, R. V., Berendt, R. D., Edelman, S., Thompson, M. C. (1955). Measurement of correlation coefficients in reverberant sound fields. The Journal of the Acoustical Society of America, 27(6), 1072–1077.
https://doi.org/10.1121/1.1908122 Google Scholar |
Crossref Cord, M., Baskent, D., Kalluri, S., Moore, B. (2007). Disparity between clinical assessment and real-world performance of hearing aids. Hearing Review, 14, 22–26.
Google Scholar Cubick, J., Dau, T. (2016). Validation of a virtual sound environment system for testing hearing aids. Acta Acustica United with Acustica, 102(3), 547–557.
https://doi.org/10.3813/AAA.918972 Google Scholar |
Crossref Culling, J. F., Colburn, H. S., Spurchise, M. (2001). Interaural correlation sensitivity. The Journal of the Acoustical Society of America, 110(2), 1020–1029.
https://doi.org/10.1121/1.1383296 Google Scholar |
Crossref |
Medline Dietz, M., Ewert, S. D., Hohmann, V. (2011). Auditory model based direction estimation of concurrent speakers from binaural signals. Speech Communication, 53(5), 592–605.
https://doi.org/10.1016/j.specom.2010.05.006 Google Scholar |
Crossref |
ISI Doclo, S., Kellermann, W., Makino, S., Nordholm, S. E. (2015). Multichannel signal enhancement algorithms for assisted listening devices: Exploiting spatial diversity using multiple microphones. IEEE Signal Processing Magazine, 32(2), 18–30.
https://doi.org/10.1109/MSP.2014.2366780 Google Scholar |
Crossref |
ISI Dörbecker, M., Ernst, S. (1996). Combination of two-channel spectral subtraction and adaptive wiener post-filtering for noise reduction and dereverberation. 1996 8th European Signal Processing Conference (EUSIPCO 1996), Trieste, Italy, 1996, pp. 1–4.
Google Scholar Faller, C., Merimaa, J. (2004). Source localization in complex listening situations: Selection of binaural cues based on interaural coherence. The Journal of the Acoustical Society of America, 116(5), 3075–3089.
https://doi.org/10.1121/1.1791872 Google Scholar |
Crossref |
Medline |
ISI Favrot, S., Marschall, M., Käsbach, J., Buchholz, J., Welle, T. (2011). Mixed-order Ambisonics recording and playback for improving horizontal directionality. 131st Audio Engineering Society Convention 2011, 641–647.
Google Scholar González, Á (2009). Measurement of areas on a sphere using Fibonacci and latitude–longitude lattices. Mathematical Geosciences, 42(1), 49.
https://doi.org/10.1007/s11004-009-9257-x Google Scholar |
Crossref Goupell, M. J., Hartmann, W. M. (2006). Interaural fluctuations and the detection of interaural incoherence: Bandwidth effects. The Journal of the Acoustical Society of America, 119(3), 3971–3986.
https://doi.org/10.1121/1.2200147 Google Scholar |
Crossref |
Medline Goupell, M. J., Hartmann, W. M. (2007). Interaural fluctuations and the detection of interaural incoherence. III. Narrowband experiments and binaural models. The Journal of the Acoustical Society of America, 122(2), 1029–1045.
https://doi.org/10.1121/1.2734489 Google Scholar |
Crossref |
Medline Grimm, G., Ewert, S., Hohmann, V. (2015). Evaluation of spatial audio reproduction schemes for application in hearing Aid research. Acta Acustica United with Acustica, 101(4), 842–854.
https://doi.org/10.3813/AAA.918878 Google Scholar |
Crossref |
ISI Grimm, G., Luberadzka, J., Hohmann, V. (2019). A Toolbox for Rendering Virtual Acoustic Environments in the Context of Audiology. Acta Acustica United with Acustica, 105(3), 566–578. doi:
10.3813/AAA.919337 Google Scholar |
Crossref Grosse, J., Hungar, F., Klockgether, S., van de Par, S. (2015). “Wahrgenommene Quellbreite einer Lautsprecheranordnung in Abhängigkeit der physikalischen Quellbreite,” (Perceived source with of a loudspeaker arrangement depending on the physical source width). Fortschritte der Akustik, presented at the DAGA 2015 Nürnberg.
Google Scholar Hautus, M. J., Meng, X. (2002). Decision strategies in the ABX (matching-to-sample) psychophysical task. Perception & Psychophysics, 64(1), 89–106.
https://doi.org/10.3758/BF03194559 Google Scholar |
Crossref |
Medline Hiyama, K., Komiyama, S., Hamasaki, K. (2002, October 1). The Minimum Number of Loudspeakers and its Arrangement for Reproducing the Spatial Impression of Diffuse Sound Field. Gehalten auf der Audio Engineering Society Convention 113.
http://www.aes.org/e-lib/browse.cfm?elib=11272 Google Scholar Hidaka, T., Beranek, L. L., Okano, T. (1995). Interaural cross-correlation, lateral fraction, and low- and high-frequency sound levels as measures of acoustical quality in concert halls. The Journal of the Acoustical Society of America, 98(2), 988–1007.
https://doi.org/10.1121/1.414451 Google Scholar |
Crossref Hochmuth, S., Jürgens, T., Brand, T., Kollmeier, B. (2015). Talker- and language-specific effects on speech intelligibility in noise assessed with bilingual talkers: Which language is more robust against noise and reverberation? International Journal of Audiology, 54(Suppl 2), 23–34.
https://doi.org/10.3109/14992027.2015.1088174 Google Scholar |
Crossref |
Medline Hodgson, M. (1996). When is diffuse-field theory applicable? Applied Acoustics, 49(3), 197–207.
https://doi.org/10.1016/S0003-682X(96)00010-2 Google Scholar |
Crossref |
ISI Huisman, T., Piechowiak, T., Dau, T., MacDonald, E. (2019). Audio-visual sound localization in virtual reality. Proceedings of the International Symposium on Auditory and Audiological Research, 7, 349–356. Retrieved from
https://proceedings.isaar.eu/index.php/isaarproc/article/view/2019-40 Google Scholar Jacobsen, F., Roisin, T. (2000). The coherence of reverberant sound fields. The Journal of the Acoustical Society of America, 108(1), 204–210.
https://doi.org/10.1121/1.429457 Google Scholar |
Crossref |
Medline Jerger, J. (2009). Ecologically valid measures of hearing aid performance. Starkey Audiology Series, 1(1), 4. Retreived from
https://starkeypro.com/pdfs/sas/Starkey_Audiology_Series_v1i1.pdf Google Scholar Jeong, C. -H . (2016). Kurtosis of room impulse responses as a diffuseness measure for reverberation chambers. The Journal of the Acoustical Society of America, 139(5), 2833–2841.
https://doi.org/10.1121/1.4949365 Google Scholar |
Crossref |
Medline Jot, J.-M., Chaigne, A. (1991). “Digital delay networks for designing artificial reverberators.,”. Proceedings of the 90th Convention on the Audio Engineering Society, Paris, France.
Google Scholar Kayser, H., Ewert, S. D., Anemüller, J., Rohdenburg, T., Hohmann, V., Kollmeier, B. (2009). Database of multichannel in-ear and behind-the-ear head-related and binaural room impulse responses. EURASIP Journal on Advances in Signal Processing, 2009(1), 1–10.
https://doi.org/10.1155/2009/298605 Google Scholar |
Crossref Keidser, G., Naylor, G., Brungart, D. S., Caduff, A., Campos, J., Carlile, S., Smeds, K. (2020). The quest for ecological validity in hearing science: What it is, why it matters, and how to advance it. Ear and Hearing, 41,
https://doi.org/10.1097/AUD.0000000000000944R Google Scholar Klumpp, R. G., Eady, H. R. (1956). Some measurements of interaural time difference thresholds. The Journal of the Acoustical Society of America, 28(5), 859–860.
https://doi.org/10.1121/1.1908493 Google Scholar |
Crossref |
ISI Kollmeier, B., Peissig, J., Hohmann, V. (1993). Real-time multiband dynamic compression and noise reduction for binaural hearing aids. Journal of Rehabilitation Research and Development, 30(1), 82–94.
Google Scholar |
Medline Kuehnel, V., Kollmeier, B., Wagener, K. (1999). Entwicklung und evaluation eines satztests für die deutsche sprache I: Design des oldenburger satztests. Zeitschrift für Audiologie, 38(1), 4–15. Retreived from
https://www.researchgate.net/publication/266735660_Entwicklung_und_Evaluation_eines_Satztests_fur_die_deutsche_Sprache_I_Design_des_Oldenburger_Satztests Google Scholar Kuttruff, H. (1995). A simple iteration scheme for the computation of decay constants in enclosures with diffusely reflecting boundaries. The Journal of the Acoustical Society of America, 98(1), 288–293.
https://doi.org/10.1121/1.413727 Google Scholar |
Crossref Lachenmayr, W., Haapaniemi, A., Lokki, T. (2016, Mai 26). Direction of Late Reverberation and Envelopment in Two Reproduced Berlin Concert Halls. Gehalten auf der Audio Engineering Society Convention 140.
Google Scholar Laitinen, M.-V., Vilkamo, J., Jussila, K., Politis, A., Pulkki, V. (2014). Gain normalization in amplitude panning as a function of frequency and room reverberance. In AES 55th International Conference, Helsinki, Finland, August, 2014 (pp. 1-6).
Google Scholar Laitinen, M., Pulkki, V. (2009). Binaural reproduction for Directional Audio Coding. 2009 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, 337–340. https://doi.org/10.1109/ASPAA.2009.5346545
Google Scholar |
Crossref Lindevald, I. M., Benade, A. H. (1986). Two-ear correlation in the statistical sound fields of rooms. The Journal of the Acoustical Society of America, 80(2), 661–664.
https://doi.org/10.1121/1.394061 Google Scholar |
Crossref Luizard, P., Katz, B. F. G., Guastavino, C. (2015). Perceptual thresholds for realistic double-slope decay reverberation in large coupled spaces. The Journal of the Acoustical Society of America, 137(1), 75–84.
https://doi.org/10.1121/1.4904515 Google Scholar |
Crossref |
Medline Macmillan, N. A., Creelman, C. D. (2004). Detection Theory: A User’s Guide (2nd ed.). New York: Psychology Press.
https://doi.org/10.4324/9781410611147 Google Scholar |
Crossref Miles, K. M., Keidser, G., Freeston, K., Beechey, T., Best, V., Buchholz, J. M. (2020). Development of the everyday conversational sentences in noise test. The Journal of the Acoustical Society of America, 147(3), 1562–1576.
https://doi.org/10.1121/10.0000780 Google Scholar |
Crossref |
Medline Moore, B. C. J. (2003). An introduction to the psychology of hearing (5th ed.). Academic Press.
Google Scholar Nolan, M., Fernandez-Grande, E., Brunskog, J., Jeong, C. -H. (2018). A wavenumber approach to quantifying the isotropy of the sound field in reverberant spaces. The Journal of the Acoustical Society of America, 143(4), 2514–2526.
https://doi.org/10.1121/1.5032194 Google Scholar |
Crossref |
Medline Oreinos, C., Buchholz, J. (2014). Validation of realistic acoustic environments for listening tests using directional hearing aids. 2014 14th International Workshop on Acoustic Signal Enhancement (IWAENC), Juan-les-Pins, France, 2014, pp. 188-192, https://doi.org/10.1109/IWAENC.2014.6954004.
Google Scholar |
Crossref Oreinos, C., Buchholz, J. M. (2016). Evaluation of loudspeaker-based virtual sound environments for testing directional hearing aids. Journal of the American Academy of Audiology, 27(07), 541–556.
https://doi.org/10.3766/jaaa.15094 Google Scholar |
Crossref |
Medline Pausch, F., Fels, J. (2020). Localization performance in a binaural real-time auralization system extended to research hearing aids. Trends in Hearing, 24, 2331216520908704.
https://doi.org/10.1177/2331216520908704 Google Scholar |
SAGE Journals |
ISI Poppitz, J., Wendt, T., van de Par, S., Ewert, S. (2018). Required Spatial Resolution for Late Reverberation in a 3-dimensional Loudspeaker Array, Fortschritte der Akustik, Deutsche Gesellschaft für Akustik, Berlin. Presented at the DAGA 2018 München.
Google Scholar Polack, J. -D . (1993). Playing billiards in the concert hall: The mathematical foundations of geometrical room acoustics. Applied Acoustics, 38(2–4), 235–244.
https://doi.org/10.1016/0003-682X(93)90054-A Google Scholar |
Crossref Pöntynen, H., Santala, O., Pulkki, V. (2016). Conflicting dynamic
留言 (0)