Impact of Psychosocial Occupational Therapy Combined with Anodal Transcranial Direct Current Stimulation to the Left Dorsolateral Prefrontal Cortex on the Cognitive Performance of Patients with Schizophrenia: A Randomized Controlled Trial

Abreu, B. C., Toglia, J. P. (1987). Cognitive rehabilitation: A model for occupational therapy. The American Journal of Occupational Therapy: Official Publication of the American Occupational Therapy Association, 41(7), 439–448. https://doi.org/10.5014/ajot.41.7.439
Google Scholar | Crossref | Medline Ambrus, G. G., Al-Moyed, H., Chaieb, L., Sarp, L., Antal, A., Paulus, W. (2012). The fade-in – short stimulation – fade out approach to sham tDCS – reliable at 1 mA for naive and experienced subjects, but not investigators. Brain Stimulation, 5(4), 499–504. https://doi.org/10.1016/j.brs.2011.12.001
Google Scholar | Crossref | Medline Arul-Anandam, A. P., Loo, C., Sachdev, P. (2009). Transcranial direct current stimulation-what is the evidence for its efficacy and safety? F1000 Medicine Reports, 1, 58. https://doi.org/10.3410/M1-58
Google Scholar | Crossref | Medline Ballesteros, S., Voelcker-Rehage, C., Bherer, L. (2018). Editorial: Cognitive and brain plasticity induced by physical exercise, cognitive training, video games, and combined interventions. Front Hum Neurosci, 12, 169. https://doi.org/10.3389/fnhum.2018.00169
Google Scholar | Crossref | Medline Bikson, M., Inoue, M., Akiyama, H., Deans, J. K., Fox, J. E., Miyakawa, H., Jefferys, J. G. (2004). Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro. The Journal of Physiology, 557(1), 175–190. https://doi.org/10.1113/jphysiol.2003.055772.
Google Scholar | Crossref | Medline Braun, R., Klein, R., Walter, H. L., Ohren, M., Freudenmacher, L., Getachew, K., Ladwig, A., Luelling, J., Neumaier, B., Endepols, H., Graf, R., Hoehn, M., Fink, G. R., Schroeter, M., Rueger, M. A. (2016). Transcranial direct current stimulation accelerates recovery of function, induces neurogenesis and recruits oligodendrocyte precursors in a rat model of stroke. Experimental Neurology, 279(1), 127–136. https://doi.org/10.1016/j.expneurol.2016.02.018
Google Scholar | Crossref | Medline Cambridge Cognition (2006). CANTAB Eclipse Version 3: Test Administration Guide. Cambridge Cognition Limited.
Google Scholar Carbon, M., Correll, C. U. (2014). Thinking and acting beyond the positive: The role of the cognitive and negative symptoms in schizophrenia. CNS Spectrums, 19(Supp 1), 35–53. https://doi.org/10.1017/S1092852914000601
Google Scholar | Crossref Cheung, J. S.-C., Chan, J. N.-M., Lau, B. W.-M., Ngai, S. P.-C. (2016). Purposeful activity in psychiatric rehabilitation: Is neurogenesis a key player? Hong Kong Journal of Occupational Therapy : HKJOT, 27(1), 42–47. https://doi.org/10.1016/j.hkjot.2016.04.002
Google Scholar | SAGE Journals Chi, R. P., Fregni, F., Snyder, A. W. (2010). Visual memory improved by non-invasive brain stimulation. Brain Research, 1353(24), 168–175. https://doi.org/10.1016/j.brainres.2010.07.062
Google Scholar | Crossref | Medline Coffman, B. A., Trumbo, M. C., Clark, V. P. (2012). Enhancement of object detection with transcranial direct current stimulation is associated with increased attention. BMC Neuroscience, 13(1), 108. https://doi.org/10.1186/1471-2202-13-108
Google Scholar | Crossref | Medline Crum, R. M., Anthony, J. C., Bassett, S. S., Folstein, M. F. (1993). Population-based norms for the mini-mental state examination by age and educational level. Journal of the American Medical Association, 269(18), 2386–2391. https://doi.org/10.1001/jama.269.18.2386.
Google Scholar | Crossref | Medline D’Esposito, M., Aguirre, G. K., Zarahn, E., Ballard, D., Shin, R. K., Lease, J. (1998). Functional MRI studies of spatial and nonspatial working memory. Brain Research Cognitive Brain Research, 7(1), 1–13. https://doi.org/10.1016/s0926-6410(98)00004-4
Google Scholar | Crossref | Medline Folstein, M. F., Folstein, S. E., McHugh, P. R. (1975). “Mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research, 12(3), 189–198.
Google Scholar | Crossref | Medline Friston, K. J. (1998). The disconnection hypothesis. Schizophrenia Research, 30(2), 115–125. https://doi.org/10.1016/s0920-9964(97)00140-0
Google Scholar | Crossref | Medline Friston, K. J. (2002). Dysfunctional connectivity in schizophrenia. World Psychiatry, 1(2), 66–71.
Google Scholar | Medline Galetto, V., Sacco, K. (2017). Neuroplastic changes induced by cognitive rehabilitation in traumatic brain injury: A review. Neurorehabilitation and Neural Repair, 31(9), 800–813. https://doi.org/10.1177/1545968317723748
Google Scholar | SAGE Journals Gladwin, T. E., den Uyl, T. E., Fregni, F. F., Wiers, R. W. (2012). Enhancement of selective attention by tDCS: Interaction with interference in a Sternberg task. Neuroscience Letters, 512(1), 33–37. https://doi.org/10.1016/j.neulet.2012.01.056
Google Scholar | Crossref | Medline Gomes, J. S., Trevizol, A. P., Ducos, D. V., Gadelha, A., Ortiz, B. B., Fonseca, A. O., Akiba, H. T., Azevedo, C. C., Guimaraes, L. S. P., Shiozawa, P., Cordeiro, Q., Lacerda, A., Dias, A. M. (2018). Effects of transcranial direct current stimulation on working memory and negative symptoms in schizophrenia: A phase II randomized sham-controlled trial. Schizophrenia Research: Cognition, 12(C), 20–28. https://doi.org/10.1016/j.scog.2018.02.003.
Google Scholar | Crossref | Medline Green, M. F. (1996). What are the functional consequences of neurocognitive deficits in schizophrenia? The American Journal of Psychiatry, 153(3), 321–330. https://doi.org/10.1176/ajp.153.3.321
Google Scholar | Crossref | Medline Haahr, M. (2010). Random.org: True Random Number Service. Retrieved April 16, 2018 from http://www.random.org
Google Scholar Hadas-Lidor, N., Katz, N., Tyano, S., Weizman, A. (2001). Effectiveness of dynamic cognitive intervention in rehabilitation of clients with schizophrenia. Clinical Rehabilitation, 15(4), 349–359. https://doi.org/10.1191/026921501678310153
Google Scholar | SAGE Journals Hasan, A., Bergener, T., Nitsche, M. A., Strube, W., Bunse, T., Falkai, P., Wobrock, T. (2013). Impairments of motor-cortex responses to unilateral and bilateral direct current stimulation in schizophrenia. Frontiers in Psychiatry, 4, 121. https://doi.org/10.3389/fpsyt.2013.00121.
Google Scholar | Crossref | Medline Hesse, S., Waldner, A., Mehrholz, J., Tomelleri, C., Pohl, M., Werner, C. (2011). Combined transcranial direct current stimulation and robot-assisted arm training in subacute stroke patients an exploratory, randomized multicenter trial. Neurorehabilitation and Neural Repair, 25(9), 838–846. https://doi.org/10.1177/1545968311413906
Google Scholar | SAGE Journals Hordacre, B., Moezzi, B., Ridding, M. C. (2018). Neuroplasticity and network connectivity of the motor cortex following stroke: A transcranial direct current stimulation study. Human Brain Mapping, 39(8), 3326–3339. https://doi.org/10.1002/hbm.24079
Google Scholar | Crossref | Medline Hoy, K. E., Arnold, S. L., Emonson, M. R., Daskalakis, Z. J., Fitzgerald, P. B. (2014). An investigation into the effects of tDCS dose on cognitive performance over time in patients with schizophrenia. Schizophrenia Research, 155(1–3), 96–100. https://doi.org/10.1016/j.schres.2014.03.006
Google Scholar | Crossref | Medline Hoy, K. E., Bailey, N. W., Arnold, S. L., Fitzgerald, P. B. (2015). The effect of transcranial direct current stimulation on gamma activity and working memory in schizophrenia. Psychiatry Research, 228(2), 191–196. https://doi.org/10.1016/j.psychres.2015.04.032
Google Scholar | Crossref | Medline Jahshan, C., Wynn, J. K., Roach, B. J., Mathalon, D. H., Green, M. F. (2020). Effects of transcranial direct current stimulation on visual neuroplasticity in schizophrenia. Clinical EEG and Neuroscience, 51(6), 382–389. https://doi.org/10.1177/1550059420925697
Google Scholar | SAGE Journals Jeon, D. W., Jung, D. U., Kim, S. J., Shim, J. C., Moon, J. J., Seo, Y. S., Jung, S. S., Seo, B. J., Kim, J. E., Oh, M., Kim, Y. N. (2018). Adjunct transcranial direct current stimulation improves cognitive function in patients with schizophrenia: A double-blind 12-week study. Schizophrenia Research, 197, 378–385. https://doi.org/10.1016/j.schres.2017.12.009.
Google Scholar | Crossref | Medline Karbalaei-Nouri, A., Sadeghi, A., Shamsolma'aali, Z. (2009). Construct Validity Confirmation of Iranian Version of Lowenstein Occupational Therapy Cognitive Assessment (LOTCA). Archives of Rehabilitation, 10(2), 0.
Google Scholar Lesh, T. A., Niendam, T. A., Minzenberg, M. J., Carter, C. S. (2011). Cognitive control deficits in schizophrenia: Mechanisms and meaning. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 36(1), 316–338. https://doi.org/10.1038/npp.2010.156.
Google Scholar | Crossref | Medline Mesulam, M. M. (1990). Large‐scale neurocognitive networks and distributed processing for attention, language, and memory. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society, 28(5), 597–613. https://doi.org/10.1002/ana.410280502
Google Scholar Mottaghy, F. M., Krause, B. J., Kemna, L. J., Töpper, R., Tellmann, L., Beu, M., Pascual-Leone, A., Müller-Gärtner, H. W. (2000). Modulation of the neuronal circuitry subserving working memory in healthy human subjects by repetitive transcranial magnetic stimulation. Neuroscience Letters, 280(3), 167–170. https://doi.org/10.1016/s0304-3940(00)00798-9
Google Scholar | Crossref | Medline Nitsche, M. A., Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. The Journal of Physiology, 527(Pt 3), 633–639. https://doi.org/10.1111/j.1469-7793.2000.t01-1-00633.x
Google Scholar | Crossref | Medline Nitsche, M. A., Cohen, L. G., Wassermann, E. M., Priori, A., Lang, N., Antal, A., Paulus, W., Hummel, F., Boggio, P. S., Fregni, F., Pascual-Leone, A. (2008). Transcranial direct current stimulation: State of the art 2008. Brain Stimulation, 1(3), 206–223. https://doi.org/10.1016/j.brs.2008.06.004
Google Scholar | Crossref | Medline Nuechterlein, K. H., Barch, D. M., Gold, J. M., Goldberg, T. E., Green, M. F., Heaton, R. K. (2004). Identification of separable cognitive factors in schizophrenia. Schizophrenia Research, 72(1), 29–39. https://doi.org/10.1016/j.schres.2004.09.007
Google Scholar | Crossref | Medline Qiao, C., Lu, L., Yang, L., Kennedy, P. J. (2019). Identifying brain abnormalities with schizophrenia based on a hybrid feature selection technology. Applied Sciences, 9(10), 2148. https://doi.org/10.3390/app9102148
Google Scholar | Crossref Rojo-Mota, G., Pedrero-Pérez, E. J., Ruiz-Sánchez de León, J. M., León-Frade, I., Aldea-Poyo, P., Alonso-Rodríguez, M., Pedrero-Aguilar, J., Morales-Alonso, S. (2017). Loewenstein occupational therapy cognitive assessment to evaluate people with addictions. Occupational Therapy International, 2017(5), 2750328. https://doi.org/10.1155/2017/2750328
Google Scholar | Medline Ruf, S. P., Fallgatter, A. J., Plewnia, C. (2017). Augmentation of working memory training by transcranial direct current stimulation (tDCS). Scientific Reports, 7(1), 876. https://doi.org/10.1038/s41598-017-01055-1
Google Scholar | Crossref | Medline Samani, M. M., Agboada, D., Jamil, A, Kuo, M., Nitsche, M. (2019). Cathodal transcranial direct current stimulation over the primary motor cortex induces nonlinear neuroplasticity with modulations of intensity and duration. Brain Stimulation: Basic, Translational, and Clinical Research in Neuromodulation, 12(2), 405. https://doi.org/10.1016/j.brs.2018.12.309
Google Scholar Shimada, T., Ohori, M., Inagaki, Y., Shimooka, Y., Sugimura, N., Ishihara, I., Yoshida, T., Kobayashi, M. (2018). A multicenter, randomized controlled trial of individualized occupational therapy for patients with schizophrenia in Japan. PLoS One, 13(4), e0193869. https://doi.org/10.1371/journal.pone.0193869
Google Scholar | Crossref | Medline Smith, R. C., Boules, S., Mattiuz, S., Youssef, M., Tobe, R. H., Sershen, H., Lajtha, A., Nolan, K., Amiaz, R., Davis, J. M. (2015). Effects of transcranial direct current stimulation (tDCS) on cognition, symptoms, and smoking in schizophrenia: A randomized controlled study. Schizophrenia Research, 168(1–2), 260–266. https://doi.org/10.1016/j.schres.2015.06.011
Google Scholar | Crossref | Medline Stephan, K. E., Baldeweg, T., Friston, K. J. (2006). Synaptic plasticity and dysconnection in schizophrenia. Biological Psychiatry, 59(10), 929–939. https://doi.org/10.1016/j.biopsych.2005.10.005
Google Scholar | Crossref | Medline Strassnig, M., Signorile, J., Gonzalez, C., Harvey, P. D. (2014). Physical performance and disability in schizophrenia. Schizophrenia Research: Cognition, 1(2), 112–121. https://doi.org/10.1016/j.scog.2014.06.002
Google Scholar | Crossref | Medline Vercammen, A., Rushby, J. A., Loo, C., Short, B., Weickert, C. S., Weickert, T. W. (2011). Transcranial direct current stimulation influences probabilistic association learning in schizophrenia. Schizophrenia Research, 131(1–3), 198–205. https://doi.org/10.1016/j.schres.2011.06.021
Google Scholar | Crossref | Medline Vos, T., Abajobir, A. A., Abate, K. H., Abbafati, C., Abbas, K. M., Abd-Allah, F., Abdulle, A. M., Abebo, T. A., Abera, S. F., Aboyans, V., Abu-Raddad, L. J., Ackerman, I. N., Adamu, A. A., Adetokunboh, O., Afarideh, M., Afshin, A., Agarwal, S. K., Aggarwal, R., Agrawal, A., Criqui, M. H. (2017). Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. The Lancet, 390(10100), 1211–1259. https://doi.org/10.1016/S0140-6736(17)32154-2

留言 (0)

沒有登入
gif