1.
Anderson, AF, Dome, DC, Gautam, S, Awh, MH, Rennirt, GW. Correlation of anthropometric measurements, strength, anterior cruciate ligament size, and intercondylar notch characteristics to sex differences in anterior cruciate ligament tear rates. Am J Sports Med. 2001;29(1):58–66.
Google Scholar |
SAGE Journals |
ISI2.
Arendt, E, Agel, J, Dick, R. Anterior cruciate ligament injury patterns among collegiate men and women. J Athl Train. 1999;34(2):86–92.
Google Scholar |
Medline |
ISI3.
Arendt, E, Randall, D. Knee injury patterns among men and women in collegiate basketball and soccer. AJSM. 1995;23(6):694–701.
Google Scholar4.
Beveridge, JE, Machan, JT, Walsh, EG, et al. Magnetic resonance measurements of tissue quantity and quality using T2* relaxometry predict temporal changes in the biomechanical properties of the healing ACL. J Orthop Res. 2018;36(6):1701–1709.
Google Scholar |
Crossref |
Medline5.
Beveridge, JE, Proffen, BL, Karamchedu, NP, et al. Cartilage damage is related to ACL stiffness in a porcine model of ACL repair. J Orthop Res. 2019;37(10):2249–2257.
Google Scholar |
Crossref |
Medline6.
Beveridge, JE, Walsh, EG, Murray, MM, Fleming, BC. Sensitivity of ACL volume and T2(*) relaxation time to magnetic resonance imaging scan conditions. J Biomech. 2017;56:117–121.
Google Scholar |
Crossref |
Medline7.
Beynnon, BD, Hall, JS, Sturnick, DR, et al. Increased slope of the lateral tibial plateau subchondral bone is associated with greater risk of noncontact ACL injury in females but not in males: a prospective cohort study with a nested, matched case-control analysis. Am J Sports Med. 2014;42(5):1039–1048.
Google Scholar |
SAGE Journals |
ISI8.
Biercevicz, AM, Akelman, MR, Fadale, PD, et al. MRI volume and signal intensity of ACL graft predict clinical, functional, and patient-oriented outcome measures after ACL reconstruction. Am J Sports Med. 2015;43(3):693–699.
Google Scholar |
SAGE Journals |
ISI9.
Biercevicz, AM, Miranda, DL, Machan, JT, Murray, MM, Fleming, BC. In situ, noninvasive, T2*-weighted MRI-derived parameters predict ex vivo structural properties of an anterior cruciate ligament reconstruction or bioenhanced primary repair in a porcine model. Am J Sports Med. 2013;41(3):560–566.
Google Scholar |
SAGE Journals |
ISI10.
Biercevicz, AM, Murray, MM, Walsh, EG, et al. T2* MR relaxometry and ligament volume are associated with the structural properties of the healing ACL. J Orthop Res. 2014;32(4):492–499.
Google Scholar |
Crossref |
Medline |
ISI11.
Biercevicz, AM, Proffen, BL, Murray, MM, Walsh, EG, Fleming, BC. T2* relaxometry and volume predict semi-quantitative histological scoring of an ACL bridge-enhanced primary repair in a porcine model. J Orthop Res. 2015;33(8):1180–1187.
Google Scholar |
Crossref |
Medline |
ISI12.
Cameron, KL, Peck, KY, Thompson, BS, et al. Reference values for the Marx Activity Rating Scale in a young athletic population: history of knee ligament injury is associated with higher scores. Sports Health. 2015;7(5):403–408.
Google Scholar |
SAGE Journals |
ISI13.
Chandrashekar, N, Slauterbeck, J, Hashemi, J. Sex-based differences in the anthropometric characteristics of the anterior cruciate ligament and its relation to intercondylar notch geometry: a cadaveric study. Am J Sports Med. 2005;33(10):1492–1498.
Google Scholar |
SAGE Journals |
ISI14.
Charlton, WPH, St John, TA, Ciccotti, MG, Harrison, N, Schweitzer, M. Differences in femoral notch anatomy between men and women: a magnetic resonance imaging study. Am J Sports Med. 2002;30:329–333.
Google Scholar |
SAGE Journals |
ISI15.
Chaudhari, AM, Zelman, EA, Flanigan, DC, Kaeding, CC, Nagaraja, HN. Anterior cruciate ligament-injured subjects have smaller anterior cruciate ligaments than matched controls: a magnetic resonance imaging study. Am J Sports Med. 2009;37(7):1282–1287.
Google Scholar |
SAGE Journals |
ISI16.
Christensen, JJ, Krych, AJ, Engasser, WM, et al. Lateral tibial posterior slope is increased in patients with early graft failure after anterior cruciate ligament reconstruction. Am J Sports Med. 2015;43(10):2510–2514.
Google Scholar |
SAGE Journals |
ISI17.
Davis, TJ, Shelbourne, KD, Klootwyk, TE. Correlation of the intercondylar notch width of the femur to the width of the anterior and posterior cruciate ligaments. Knee Surg Sports Traumatol Arthrosc. 1999;7(4):209–214.
Google Scholar |
Crossref |
Medline |
ISI18.
Dienst, M, Schneider, G, Altmeyer, K, et al. Correlation of intercondylar notch cross sections to the ACL size: a high resolution MR tomographic in vivo analysis. Arch Orthop Trauma Surg. 2007;127(4):253–260.
Google Scholar |
Crossref |
Medline |
ISI19.
Eliasziw, M, Young, SL, Woodbury, MG, Fryday-Field, K. Statistical methodology for the concurrent assessment of interrater and intrarater reliability: using goniometric measurements as an example. Phys Ther. 1994;74(8):777–788.
Google Scholar |
Crossref |
Medline |
ISI20.
Fayad, LM, Rosenthal, EH, Morrison, WB, Carrino, JA. Anterior cruciate ligament volume: analysis of gender differences. J Magn Reson Imaging. 2008;27(1):218–223.
Google Scholar |
Crossref |
Medline21.
Fleming, BC, Vajapeyam, S, Connolly, SA, Magarian, EM, Murray, MM. The use of magnetic resonance imaging to predict ACL graft structural properties. J Biomech. 2011;44(16):2843–2846.
Google Scholar |
Crossref |
Medline |
ISI22.
Grassi, A, Bailey, JR, Signorelli, C, et al. Magnetic resonance imaging after anterior cruciate ligament reconstruction: a practical guide. World J Orthop. 2016;7(10):638–649.
Google Scholar |
Crossref |
Medline23.
Grassi, A, Macchiarola, L, Urrizola Barrientos, F, et al. Steep posterior tibial slope, anterior tibial subluxation, deep posterior lateral femoral condyle, and meniscal deficiency are common findings in multiple anterior cruciate ligament failures: an MRI case-control study. Am J Sports Med. 2019;47(2):285–295.
Google Scholar |
SAGE Journals |
ISI24.
Gwinn, DE, Wilckens, JH, McDevitt, ER, Ross, G, Kao, T. The relative incidence of anterior cruciate ligament injury in men and women at the United States Naval Academy. Am J Sports Med. 2000;28(1):98–102.
Google Scholar |
SAGE Journals |
ISI25.
Hashemi, J, Chandrashekar, N, Gill, B, et al. The geometry of the tibial plateau and its influence on the biomechanics of the tibiofemoral joint. J Bone Joint Surg Am. 2008;90(12):2724–2734.
Google Scholar |
Crossref |
Medline |
ISI26.
Hashemi, J, Chandrashekar, N, Mansouri, H, et al. Shallow medial tibial plateau and steep medial and lateral tibial slopes: new risk factors for anterior cruciate ligament injuries. Am J Sports Med. 2010;38(1):54–62.
Google Scholar |
SAGE Journals |
ISI27.
Hashemi, J, Chandrashekar, N, Mansouri, H, Slauterbeck, JR, Hardy, DM. The human anterior cruciate ligament: sex differences in ultrastructure and correlation with biomechanical properties. J Orthop Res. 2008;26(7):945–950.
Google Scholar |
Crossref |
Medline |
ISI28.
Hashemi, J, Mansouri, H, Chandrashekar, N, et al. Age, sex, body anthropometry, and ACL size predict the structural properties of the human anterior cruciate ligament. J Orthop Res. 2011;29(7):993–1001.
Google Scholar |
Crossref |
Medline |
ISI29.
Hewett, TE, Myer, GD, Ford, KR. Anterior cruciate ligament injuries in female athletes: Part 1, mechanisms and risk factors. Am J Sports Med. 2006;34(2):299–311.
Google Scholar |
SAGE Journals |
ISI30.
Hosseinzadeh, S, Kiapour, AM. Age-related changes in ACL morphology during skeletal growth and maturation are different between females and males. J Orthop Res. 2021;39(4):841–849.
Google Scholar |
Crossref |
Medline31.
Howell, SM, Barad, SJ. Knee extension and its relationship to the slope of the intercondylar roof. Implications for positioning the tibial tunnel in anterior cruciate ligament reconstructions. Am J Sports Med. 1995;23:288–294.
Google Scholar |
SAGE Journals |
ISI32.
Hudek, R, Schmutz, S, Regenfelder, F, Fuchs, B, Koch, PP. Novel measurement technique of the tibial slope on conventional MRI. Clin Orthop Relat Res. 2009;467(8):2066–2072.
Google Scholar |
Crossref |
Medline |
ISI33.
Jamison, ST, Flanigan, DC, Nagaraja, HN, Chaudhari, AM. Side-to-side differences in anterior cruciate ligament volume in healthy control subjects. J Biomech. 2010;43(3):576–578.
Google Scholar |
Crossref |
Medline34.
Kiapour, AM, Ecklund, K, Murray, MM, et al. Changes in cross-sectional area and signal intensity of healing anterior cruciate ligaments and grafts in the first 2 years after surgery. Am J Sports Med. 2019;47(8):1831–1843.
Google Scholar |
SAGE Journals |
ISI35.
Kiapour, AM, Yang, DS, Badger, GJ, et al. Anatomic features of the tibial plateau predict outcomes of ACL reconstruction within 7 years after surgery. Am J Sports Med. 2019;47(2):303–311.
Google Scholar |
SAGE Journals |
ISI36.
Komatsuda, T, Sugita, T, Sano, H, et al. Does estrogen alter the mechanical properties of the anterior cruciate ligament? An experimental study in rabbits. Acta Orthop. 2006;77(6):973–980.
Google Scholar |
Crossref |
Medline |
ISI37.
Levins, JG, Sturnick, DR, Argentieri, EC, et al. Geometric risk factors associated with noncontact anterior cruciate ligament graft rupture. Am J Sports Med. 2016;44(10):2537–2545.
Google Scholar |
SAGE Journals |
ISI38.
Li, H, Chen, S, Tao, H, Li, H, Chen, S. Correlation analysis of potential factors influencing graft maturity after anterior cruciate ligament reconstruction. Orthop J Sports Med. 2014;2(10):2325967114553552.
Google Scholar |
SAGE Journals39.
Li, H, Tao, H, Cho, S, et al. Difference in graft maturity of the reconstructed anterior cruciate ligament 2 years postoperatively: a comparison between autografts and allografts in young men using clinical and 3.0-T magnetic resonance imaging evaluation. Am J Sports Med. 2012;40(7):1519–1526.
Google Scholar |
SAGE Journals |
ISI40.
Li, H, Zeng, C, Wang, Y, et al. Association between magnetic resonance imaging-measured intercondylar notch dimensions and anterior cruciate ligament injury: a meta-analysis. Arthroscopy. 2018;34(3):889–900.
Google Scholar |
Crossref |
Medline41.
Li, Y, Hong, L, Feng, H, et al. Posterior tibial slope influences static anterior tibial translation in anterior cruciate ligament reconstruction: a minimum 2-year follow-up study. Am J Sports Med. 2014;42(4):927–933.
Google Scholar |
SAGE Journals |
ISI42.
Lipps, DB, Wilson, AM, Ashton-Miller, JA, Wojtys, EM. Evaluation of different methods for measuring lateral tibial slope using magnetic resonance imaging. Am J Sports Med. 2012;40(12):2731–2736.
Google Scholar |
SAGE Journals |
ISI43.
Murray, MM, Fleming, BC, Badger, GJ, et al. Bridge-enhanced anterior cruciate ligament repair is not inferior to autograft anterior cruciate ligament reconstruction at 2 years: results of a prospective randomized clinical trial. Am J Sports Med. 2020;48(6):1305–1315.
Google Scholar |
SAGE Journals |
ISI44.
Murray, MM, Kalish, LA, Fleming, BC, et al. Bridge-enhanced anterior cruciate ligament repair: two-year results of a first-in-human study. Orthop J Sports Med. 2019;7(3):232596711882435.
Google Scholar |
SAGE Journals |
ISI45.
Murray, MM, Kiapour, AM, Kalish, LA, et al. Predictors of healing ligament size and magnetic resonance signal intensity at 6 months after bridge-enhanced anterior cruciate ligament repair. Am J Sports Med. 2019;47(6):1361–1369.
Google Scholar |
SAGE Journals |
ISI46.
Napier, RJ, Garcia, E, Devitt, BM, Feller, JA, Webster, KE. Increased radiographic posterior tibial slope is associated with subsequent injury following revision anterior cruciate ligament reconstruction. Orthop J Sports Med. 2019;7(11):2325967119879373.
Google Scholar |
SAGE Journals |
ISI47.
Park, JS, Nam, DC, Kim, DH, Kim, HK, Hwang, SC. Measurement of knee morphometrics using MRI: a comparative study between ACL-injured and non-injured knees. Knee Surg Relat Res. 2012;24(3):180–185.
Google Scholar
留言 (0)