Myelin Protein Zero Immunohistochemistry Is Not a Reliable Marker of Extrinsic Mucosal Innervation in Patients With Hirschsprung Disease

1. Tam, PKH, Boyd, GP. Origin, course, and endings of abnormal enteric nerve fibers in Hirschsprung's disease defined by whole-mount immunohistochemistry. J Pediatr Surg. 1990;25:457-461.
Google Scholar | Crossref | Medline | ISI2. Watanabe, Y, Ito, F, Ando, H, et al. Extrinsic nerve strands in the aganglionic segment of Hirschsprung’s disease. J Pediatr Surg. 1998;33(8):1233-1237.
Google Scholar | Crossref | Medline3. Kawana, T, Nada, O, Ikeda, S, et al. Distribution and localization of glial fibrillary acidic protein in colons affected by Hirschsprung’s disease. J Pediatr Surg. 1989;24:448-452.
Google Scholar | Crossref | Medline4. Kapur, RP . Calretinin-immunoreactive mucosal innervation in very short-segment Hirschsprung disease: a potentially misleading observation. Pediatr Dev Pathol. 2014;17(1):28-35.
Google Scholar | SAGE Journals | ISI5. Guinard-Samuel, V, Bonnard, A, De Lagausie, P, et al. Calretinin immunohistochemistry: a simple and efficient tool to diagnose Hirschsprung disease. Mod Pathol. 2009;22(10):1379-1384.
Google Scholar | Crossref | Medline | ISI6. Kapur, RP, Reed, RC, Finn, LS, Patterson, K, Johanson, J, Rutledge, JC. Calretinin immunohistochemistry versus acetylcholinesterase histochemistry in the evaluation of suction rectal biopsies for Hirschsprung Disease. Pediatr Dev Pathol. 2009;12(1):6-15.
Google Scholar | SAGE Journals | ISI7. Meier-Ruge, W, Lutterbeck, PM, Herzog, B, Morger, R, Moser, R, Sharli, A. Acetylcholinesterase activity in suction biopsies of the rectum in the diagnosis of Hirschsprung disease. J Pediatr Surg. 1972;7:11-16.
Google Scholar | Crossref | Medline | ISI8. Kapur, RP, Raess, PW, Hwang, S, Winter, C. Choline transporter immunohistochemistry: An effective substitute for acetylcholinesterase histochemistry to diagnose Hirschsprung disease with formalin-fixed paraffin-embedded rectal biopsies. Pediatr Dev Pathol. 2017;20(4):308-320.
Google Scholar | SAGE Journals | ISI9. Baumgarten, HG, Holstein, AF, Stelzener, F. Nervous elements in the human colon of Hirschsprung’s disease. Virchows Arch. 1973;358:113-136.
Google Scholar | Crossref10. Grubisic, V, Gulbransen, BD. Enteric glia: the most alimentary of all glia. J Physiol. 2017;595(2):557-570.
Google Scholar | Crossref | Medline11. Gulbransen, BD, Sharkey, KA. Novel functional roles for enteric glia in the gastrointestinal tract. Nat Rev Gastroenterol Hepatol. 2012;9(11):625-632.
Google Scholar | Crossref | Medline12. Howard, ER, Garrett, JR. Electron microscopy of myenteric nerves in Hirschsprung disease and in normal bowel. Gut. 1970;11:1007-1014.
Google Scholar | Crossref | Medline13. McClain, J, Grubisic, V, Fried, D, et al. Ca2+ responses in enteric glia are mediated by connexin-43 hemichannels and modulate colonic transit in mice. Gastroenterology. 2014;146(2):497-507.
Google Scholar | Crossref | Medline14. Jessen, KR, Mirsky, R. Glial cells in the enteric nervous system contain glial fibrillary acidic protein. Nature. 1980;286:736-737.
Google Scholar | Crossref | Medline | ISI15. Rao, M, Nelms, BD, Dong, L, et al. Enteric glia express proteolipid protein 1 and are a transcriptionally unique population of glia in the mammalian nervous system. Glia. 2015;63(11):2040-2057.
Google Scholar | Crossref | Medline16. Jessen, KR, Mirsky, R. Glial fibrillary acidic polypeptides in peripheral glia. Molecular weight, heterogeneity and distribution. J Neuroimmunol. 1985;8(4-6):377-393.
Google Scholar | Crossref | Medline17. Badizadegan, K, Thomas, AR, Nagy, N, et al. Presence of intramucosal neuroglial cells in normal and aganglionic human colon. Am J Physiol Gastrointest Liver Physiol. 2014;307(10):G1002-G1012.
Google Scholar | Crossref | Medline18. Savidge, TC, Newman, P, Pothoulakis, C, et al. Enteric glia regulate intestinal barrier function and inflammation via release of S-nitrosoglutathione. Gastroenterology. 2007;132(4):1344-1358.
Google Scholar | Crossref | Medline | ISI19. Kawana, T, Nada, O, Ikeda, K. An immunohistochemical study of glial fibrillary acidic (GFA) protein and S-100 protein in the colon affected by Hirschsprung’s disease. Dig Dis Sci. 1988;33(9):1164-1174.
Google Scholar | Medline20. Grundmann, D, Loris, E, Maas-Omlor, S, et al. Enteric Glia: S100, GFAP, and Beyond. Anat Rec. 2019;302(8):1333-1344.
Google Scholar | Crossref21. Raasakka, A, Kursula, P. How does protein zero assemble compact myelin? Cells. 2020;9(8):1832.
Google Scholar | Crossref22. Jessen, KR, Mirsky, R. Schwann cell precursors; multipotent glial cells in embryonic nerves. Front Mol Neurosci. 2019;12:69.
Google Scholar | Crossref | Medline23. Woods, C, Kapur, RP, Bischoff, A, et al. Neurons populating the rectal extrinsic nerves in humans express neuronal and Schwann cell markers. Neuro Gastroenterol Motil. 2020;33(7):e14074.
Google Scholar | Medline24. Yoshimura, K, Negishi, T, Kaneko, A, et al. Monoclonal antibodies specific to the integral membrane protein P0 of bovine peripheral nerve myelin. Neurosci Res. 1996;25(1):41-49.
Google Scholar | Crossref | Medline

留言 (0)

沒有登入
gif