Temporary Intermediates of L-Trp Along the Reaction Pathway of Human Indoleamine 2,3-Dioxygenase 1 and Identification of an Exo Site

1. Haufroid, M, Mirgaux, M, Leherte, L, Wouters, J. Crystal structures and snapshots along the reaction pathway of human phosphoserine phosphatase. Acta Crystallogr D Struct Biol. 2019;75:592–604.
Google Scholar | Crossref | Medline2. Hövel, K, Shallom, D, Niefind, K, et al. Crystal structure and snapshots along the reaction pathway of a family 51 α-L-arabinofuranosidase. EMBO J. 2003;22:4922–4932.
Google Scholar | Crossref | Medline3. Gerlits, O, Tian, J, Das, A, Langan, P, Heller, WT, Kovalevsky, A. Phosphoryl transfer reaction snapshots in crystals: insights into the mechanism of protein kinase a catalytic subunit. J Biol Chem. 2015;290:15538–15548.
Google Scholar | Crossref | Medline4. Osborne, MJ, Schnell, J, Benkovic, SJ, Dyson, HJ, Wright, PE. Backbone dynamics in dihydrofolate reductase complexes: role of loop flexibility in the catalytic mechanism. Biochemistry. 2001;40:9846–9859.
Google Scholar | Crossref | Medline5. Somavarapu, AK, Kepp, KP. The dynamic mechanism of presenilin-1 function: sensitive gate dynamics and loop unplugging control protein access. Neurobiol Dis. 2016;89:147–156.
Google Scholar | Crossref | Medline6. Renault, L, Guibert, B, Cherfils, J. Structural snapshots of the mechanism and inhibition of a guanine nucleotide exchange factor. Nature. 2003;426:525–530.
Google Scholar | Crossref | Medline7. Papaleo, E, Saladino, G, Lambrughi, M, Lindorff-Larsen, K, Gervasio, FL, Nussinov, R. The role of protein loops and linkers in conformational dynamics and allostery. Chem Rev. 2016;116:6391–6423.
Google Scholar | Crossref | Medline8. Li, F, Zhang, R, Li, S, Liu, J. IDO1: an important immunotherapy target in cancer treatment. Int Immunopharmacol. 2017;47:70–77.
Google Scholar | Crossref | Medline9. Liu, M, Wang, X, Wang, L, et al. Targeting the IDO1 pathway in cancer: from bench to bedside. J Hematol Oncol. 2018;11:100–112.
Google Scholar | Crossref | Medline10. Phillips, RS, Iradukunda, EC, Hughes, T, Bowen, JP. Modulation of enzyme activity in the kynurenine pathway by kynurenine monooxygenase inhibition. Front Mol Biosci. 2019;6:3–9.
Google Scholar | Crossref | Medline11. Uyttenhove, C, Pilotte, L, Théate, I, et al. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med. 2003;9:1269–1274.
Google Scholar | Crossref | Medline | ISI12. Takikawa, O . Biochemical and medical aspects of the indoleamine 2,3-dioxygenase-initiated L-tryptophan metabolism. Biochem Biophys Res Commun. 2005;338:12–19.
Google Scholar | Crossref | Medline | ISI13. Moon, YW, Hajjar, J, Hwu, P, Naing, A. Targeting the indoleamine 2,3-dioxygenase pathway in cancer. J Immunother Cancer. 2015;3:51–10.
Google Scholar | Crossref | Medline14. Prendergast, GC, Malachowski, WJ, Mondal, A, Scherle, P, Muller, AJ. Indoleamine 2,3-dioxygenase and its therapeutic inhibition in cancer. Int Rev Cell Mol Biol. 2018;336:175–203.
Google Scholar | Crossref | Medline15. Mellor, AL, Munn, DH. IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat Rev Immunol. 2004;4:762–774.
Google Scholar | Crossref | Medline | ISI16. Munn, DH, Mellor, AL. Indoleamine 2,3-dioxygenase and tumor-induced tolerance. J Clin Investig. 2007;117:1147–1154.
Google Scholar | Crossref | Medline | ISI17. Katz, JB, Muller, AJ, Prendergast, GC. Indoleamine 2,3-dioxygenase in T-cell tolerance and tumoral immune escape. Immunol Rev. 2008;222:206–221.
Google Scholar | Crossref | Medline | ISI18. Prendergast, GC . Immune escape as a fundamental trait of cancer: focus on IDO. Oncogene. 2008;27:3889–3900.
Google Scholar | Crossref | Medline | ISI19. Sugimoto, H, Oda, SI, Otsuki, T, et al. Crystal structure of human indoleamine 2,3-dioxygenase: catalytic mechanism of O2 incorporation by a heme-containing dioxygenase. Proc Natl Acad Sci USA. 2006;103:2611–2616.
Google Scholar | Crossref | Medline | ISI20. Peng, YH, Ueng, SH, Tseng, CT, et al. Important hydrogen bond networks in Indoleamine 2,3-dioxygenase 1 (IDO1) inhibitor design revealed by crystal structures of Imidazoleisoindole derivatives with IDO1. J Med Chem. 2016;59:282–293.
Google Scholar | Crossref | Medline21. Peng, YH, Liao, FY, Tseng, CT, et al. Correction to unique sulfur-aromatic interactions contribute to the binding of potent Imidazothiazole indoleamine 2,3-dioxygenase inhibitors. J Med Chem. 2020;63:7445–1659.
Google Scholar22. Crosignani, S, Bingham, P, Bottemanne, P, et al. Discovery of a novel and selective indoleamine 2,3-dioxygenase (IDO-1) inhibitor 3-(5-fluoro-1H-indol-3-yl)pyrrolidine-2,5-dione (EOS200271/PF-06840003) and its characterization as a potential clinical candidate. J Med Chem. 2017;60:9617–9629.
Google Scholar | Crossref | Medline23. Lewis-Ballester, A, Karkashon, S, Batabyal, D, Poulos, TL, Yeh, SR. Inhibition mechanisms of human indoleamine 2,3 dioxygenase 1. J Am Chem Soc. 2018;140:8518–8525.
Google Scholar | Crossref | Medline24. Lewis-Ballester, A, Pham, KN, Batabyal, D, et al. Structural insights into substrate and inhibitor binding sites in human indoleamine 2,3-dioxygenase 1. Nat Commun. 2017;8:1693–1697.
Google Scholar | Crossref | Medline25. Kumar, S, Waldo, JP, Jaipuri, FA, et al. Discovery of clinical candidate (1R,4r)-4-((R)-2-((S)-6-Fluoro-5H-imidazo[5,1-a]isoindol-5-yl)-1-hydroxyethyl)cyclohexan-1-ol (Navoximod), a potent and selective inhibitor of indoleamine 2,3-dioxygenase 1. J Med Chem. 2019;62:6705–6733.
Google Scholar | Crossref | Medline26. Alexandre, JAC, Swan, MK, Latchem, MJ, et al. New 4-Amino1,2,3-triazole inhibitors of Indoleamine 2,3-dioxygenase form a long-lived complex with the enzyme and display exquisite cellular potency. Chembiochem. 2018;19:552–561.
Google Scholar | Crossref | Medline27. Luo, S, Xu, K, Xiang, S, et al. High-resolution structures of inhibitor complexes of human indoleamine 2,3-dioxygenase 1 in a new crystal form. Acta Crystallogr F Struct Biol Commun. 2018;74:717–724.
Google Scholar | Crossref | Medline28. Nelp, MT, Kates, PA, Hunt, JT, et al. Immune-modulating enzyme indoleamine 2,3-dioxygenase is effectively inhibited by targeting its apo-form. Proc Natl Acad Sci USA. 2018;115:3249–3254.
Google Scholar | Crossref | Medline29. Pham, KN, Lewis-Ballester, A, Yeh, SR. Structural basis of inhibitor selectivity in human indoleamine 2,3-Dioxygenase 1 and Tryptophan Dioxygenase. J Am Chem Soc. 2019;141:18771–18779.
Google Scholar | Crossref | Medline30. Pham, KN, Lewis-Ballester, A, Yeh, SR. Conformational plasticity in human Heme-Based dioxygenases. J Am Chem Soc. 2021;143:1836–1845.
Google Scholar | Crossref | Medline31. Pham, KN, Yeh, SR. Mapping the binding trajectory of a suicide inhibitor in human indoleamine 2,3-dioxygenase 1. J Am Chem Soc. 2018;140:14538–14541.
Google Scholar | Crossref | Medline32. Röhrig, UF, Reynaud, A, Majjigapu, SR, Vogel, P, Pojer, F, Zoete, V. Inhibition mechanisms of indoleamine 2,3-dioxygenase 1 (IDO1). J Med Chem. 2019;62:8784–8795.
Google Scholar | Crossref | Medline33. White, C, McGowan, MA, Zhou, H, et al. Strategic incorporation of polarity in heme-displacing inhibitors of Indoleamine-2,3-dioxygenase-1 (IDO1). ACS Med Chem Lett. 2020;11:550–557.
Google Scholar | Crossref | Medline34. Zhang, H, Liu, K, Pu, Q, et al. Discovery of Aminocyclobutarene-derived indoleamine-2,3-dioxygenase 1 (IDO1) inhibitors for cancer immunotherapy. ACS Med Chem Lett. 2019;10:1530–1536.
Google Scholar | Crossref | Medline35. Li, D, Deng, Y, Achab, A, et al. Carbamate and N-pyrimidine mitigate amide hydrolysis: structure-based drug design of tetrahydroquinoline IDO1 inhibitors. ACS Med Chem Lett. 2021;12:389–396.
Google Scholar | Crossref | Medline36. Röhrig, UF, Majjigapu, SR, Reynaud, A, et al. Azole-Based indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors. J Med Chem. 2021;64:2205–2227.
Google Scholar | Crossref | Medline37. Pu, Q, Zhang, H, Guo, L, et al. Discovery of potent and orally available bicyclo[1.1.1]pentane-Derived Indoleamine-2,3-dioxygenase 1 (IDO1) inhibitors. ACS Med Chem Lett. 2020;11:1548–1554.
Google Scholar | Crossref | Medline38. Álvarez, L, Lewis-Ballester, A, Roitberg, A, et al. Structural study of a flexible active site loop in human indoleamine 2,3-dioxygenase and its functional implications. Biochemistry. 2016;55:2785–2793.
Google Scholar | Crossref | Medline39. Mirgaux, M, Leherte, L, Wouters, J. Influence of the presence of the heme cofactor on the JK-loop structure in indoleamine 2,3-dioxygenase 1. Acta Crystallogr D Struct Biol. 2020;76:1211–1221.
Google Scholar | Crossref | Medline40. Greco, FA, Albini, E, Coletti, A, et al. Tracking hidden binding pockets along the molecular recognition path of l-trp to Indoleamine 2,3-dioxygenase 1. ChemMedChem. 2019;14:2084–2092.
Google Scholar | Crossref | Medline41. Kabsch, W . Xds. Acta Crystallogr D Struct Biol. 2010;66:125–132.
Google Scholar | Crossref42. McCoy, AJ, Grosse-Kunstleve, RW, Adams, PD, Winn, MD, Storoni, LC, Read, RJ. Phaser crystallographic software. J Appl Crystallogr. 2007;40:658–674.
Google Scholar | Crossref | Medline | ISI43. Emsley, P, Lohkamp, B, Scott, WG, Cowtan, K. Features and development of coot. Acta Crystallogr D Biol Crystallogr. 2010;66:486–501.
Google Scholar | Crossref | Medline44. Adams, PD, Afonine, PV, Bunkóczi, G, et al. Phenix: a comprehensive python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr. 2010;66:213–221.
Google Scholar | Crossref | Medline45. Moriarty, NW, Grosse-Kunstleve, RW, Adams, PD. Electronic ligand builder and optimization workbench (elbow): a tool for ligand coordinate and restraint generation. Acta Crystallogr D Biol Crystallogr. 2009;65:1074–1080.
Google Scholar | Crossref | Medline46. Schrodinger . Schrodinger Rrelease 2021–2, SiteMap. LLC; 2021.
Google Scholar47. Madhavi Sastry, G, Adzhigirey, M, Day, T, Annabhimoju, R, Sherman, W. Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des. 2013;27:221–234.
Google Scholar | Crossref | Medline48. Jacobson, MP, Pincus, DL, Rapp, CS, et al. A hierarchical approach to all-atom protein loop prediction. Proteins. 2004;55:351–367.
Google Scholar | Crossref | Medline49. Jacobson, MP, Friesner, RA, Xiang, Z, Honig, B. On the role of the crystal environment in determining protein side-chain conformations. J Mol Biol. 2002;320:597–608.
Google Scholar | Crossref |

留言 (0)

沒有登入
gif