[1]
Lynch, P . The origins of computer weather prediction and climate modeling. J Comput Physics 2008;227:3431–3444.
Google Scholar |
Crossref[2]
Hawkins, J . Economic forecasting: history and procedures. Econ Round-up 2005;Autumn 2005:1–10.
Google Scholar[3]
Soyiri, IN, Reidpath, DD. An overview of health forecasting. Environ Health Prev Med 2013;18:1–9.
Google Scholar |
Crossref |
Medline4]
Permanasari, AE, Hidayah, I, Bustoni, IA. SARIMA (Seasonal ARIMA) implementation on time series to forecast the number of Malaria incidence. 2013 International Conference on Information Technology and Electrical Engineering (ICITEE); IEEE, 2013.
Google Scholar |
Crossref5]
Rutherford, MJ, Thompson, JR, Lambert, PC. Projecting cancer incidence using age–period–cohort models incorporating restricted cubic splines. Int J Biostat 2012;8:33,4679.1411.
Google Scholar |
Crossref |
Medline[6]
Kilpi, F, Webber, L, Musaigner, A, et al. Alarming predictions for obesity and non-communicable diseases in the Middle East. Public Health Nutr 2014;17:1078–1086.
Google Scholar |
Crossref |
Medline7]
Rechel, B, Grundy, E, Robine, JM, et al. Ageing in the European Union. Lancet 2013;381:1312–3322.
Google Scholar |
Crossref |
Medline |
ISI8]
Verschuuren, M, Hilderink, HBM, Vonk, RAA. The Dutch Public Health Foresight Study 2018: an example of a comprehensive foresight exercise. Eur J Public Health 2020;30:30–35.
Google Scholar |
Medline9]
Borodulin, K, Tolonen, H, Jousilahti, P, et al. Cohort Profile: the National FINRISK Study. Int J Epidemiol 2018;47:696–696i.
Google Scholar |
Crossref |
Medline[10]
Borodulin, K, Sääksjärvi, K (eds). FinHealth 2017 Study – Methods. Report 17/2019 ed. Helsinki, Finland: Finnish Institute for Health and Welfare, 2019.
Google Scholar[11]
van Buuren, S . Multiple imputation of discrete and continuous data by fully conditional specification. Stat Methods Med Res 2007;16:219–242.
Google Scholar |
SAGE Journals |
ISI[12]
Rubin, DB . Multiple imputation for nonresponse in surveys. New York: John Wiley & Sons, 1987.
Google Scholar |
Crossref[13]
White, IR, Royston, P, Wood, AM. Multiple imputation using chained equations: issues and guidance for practice. Stat Med 2011;30:377–399.
Google Scholar |
Crossref |
Medline |
ISI[14]
van Buuren, S, Groothuis-Oudshoorn, K. MICE: multivariate imputation by chained equations in R. J Stat Softw 2011;45:1–67.
Google Scholar |
ISI[15]
Official Statistics of Finland . Population projection e-publication. Helsinki: Statistics Finland. 2020.
http://www.stat.fi/til/vaenn/index_en.html (accessed 13 November 2021).
Google Scholar[16]
Schwarz, G . Estimating the dimension of a model. Ann Stat 1978;6:461–464.
Google Scholar |
Crossref |
ISI[17]
Marrie, RA, Dawson, NV, Garland, A. Quantile regression and restricted cubic splines are useful for exploring relationships between continuous variables. J Clin Epidemiol 2009;62:511,7.e1.
Google Scholar |
Crossref |
Medline[18]
Härkänen, T, Sainio, P, Stenholm, S, et al. Projecting long-term trends in mobility limitations: impact of excess weight, smoking and physical inactivity. J Epidemiol Community Health 2019;73:443–450.
Google Scholar |
Crossref |
Medline[19]
Shah, AD, Bartlett, JW, Carpenter, J, et al. Comparison of random forest and parametric imputation models for imputing missing data using MICE: a CALIBER study. Am J Epidemiol 2014;179:764–774.
Google Scholar |
Crossref |
Medline[20]
Hengl, T, Nussbaum, M, Wright, MN, et al. Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables. Peer J 2018;6:e5518.
Google Scholar |
Crossref |
Medline[21]
Wisniowski, A, Smith, PW, Bijak, J, et al. Bayesian population forecasting: extending the Lee–Carter method. Demography 2015;52:1035–1059.
Google Scholar |
Crossref |
Medline[22]
Frey, HC, Burmaster, DE. Methods for characterizing variability and uncertainty: comparison of bootstrap simulation and likelihood-based approaches. Risk Analysis 1999;19:109–130.
Google Scholar |
Crossref[23]
Steel, MF . Bayesian model averaging and forecasting. Bull EU and US Inflation and Macroeconomic Analysis 2011;200:30–41.
Google Scholar
留言 (0)