1.
Hance, KW, Anderson, WF, Devesa, SS, Young, HA, Levine, PH. Trends in inflammatory breast carcinoma incidence and survival: the surveillance, epidemiology, and end results program at the National Cancer Institute. J Natl Cancer Inst. 2005;97:966-975. doi:
10.1093/jnci/dji172.
Google Scholar |
Crossref |
Medline2.
Lehman, HL, Dashner, EJ, Lucey, M, et al. Modeling and characterization of inflammatory breast cancer emboli grown in vitro. Int J Cancer. 2013;132:2283-2294. doi:
10.1002/ijc.27928.
Google Scholar |
Crossref |
Medline3.
Mego, M, Giordano, A, De Giorgi, U, et al. Circulating tumor cells in newly diagnosed inflammatory breast cancer. Breast Cancer Res BCR. 2015;17:2. doi:
10.1186/s13058-014-0507-6.
Google Scholar |
Crossref |
Medline4.
Aceto, N, Bardia, A, Miyamoto, DT, et al. Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell. 2014;158:1110-1122. doi:
10.1016/j.cell.2014.07.013.
Google Scholar |
Crossref |
Medline |
ISI5.
Théry, C, Ostrowski, M, Segura, E. Membrane vesicles as conveyors of immune responses. Nat Rev Immunol. 2009;9:581-593. doi:
10.1038/nri2567.
Google Scholar |
Crossref |
Medline |
ISI6.
Muralidharan-Chari, V, Clancy, JW, Sedgwick, A, D’Souza-Schorey, C. Microvesicles: mediators of extracellular communication during cancer progression. J Cell Sci. 2010;123:1603-1611. doi:
10.1242/jcs.064386.
Google Scholar |
Crossref |
Medline |
ISI7.
do Amaral, JB, Urabayashi, MS, Machado-Santelli, GM. Cell death and lumen formation in spheroids of MCF-7 cells. Cell Biol Int. 2010;34:267-274. doi:
10.1042/CBI20090024.
Google Scholar |
Crossref |
Medline8.
Morales, J, Alpaugh, ML. Gain in cellular organization of inflammatory breast cancer: a 3D in vitro model that mimics the in vivo metastasis. BMC Cancer. 2009;9:462. doi:
10.1186/1471-2407-9-462.
Google Scholar |
Crossref |
Medline |
ISI9.
Zu, Y, Sidhu, GS, Wieczorek, R, Cassai, ND. Ultrastructurally “invasive” microvilli in an aggressively metastasizing biphasic malignant mesothelioma. Ultrastruct Pathol. 2002;26:403-409. doi:
10.1080/01913120290104719.
Google Scholar |
Crossref |
Medline10.
Ren, J, Hamada, J, Okada, F, et al. Correlation between the presence of microvilli and the growth or metastatic potential of tumor cells. Jpn J Cancer Res Gann. 1990;81:920-926. doi:
10.1111/j.1349-7006.1990.tb02668.x.
Google Scholar |
Crossref |
Medline11.
Ren, J . Relationship between development of microvilli on tumor cells and growth or metastatic potential of tumor cells. Hokkaido Igaku Zasshi. 1991;66:187-200.
Google Scholar |
Medline12.
Tanaka, N, Miyamoto, T, Kimijima, Y, Mimura, M, Ichinose, S. Microvilli and desmosomes of squamous cell carcinoma cells in tongue carcinoma related to regional lymph node metastasis: ultrastructural and immunohistochemical studies with transferrin receptor. Med Electron Microsc. 2000;33:157-164. doi:
10.1007/s007950000016.
Google Scholar |
Crossref |
Medline13.
Dolo, V, D’Ascenzo, S, Violini, S, et al. Matrix-degrading proteinases are shed in membrane vesicles by ovarian cancer cells in vivo and in vitro. Clin Exp Metastasis. 1999;17:131-140. doi:
10.1023/a:1006500406240.
Google Scholar |
Crossref |
Medline |
ISI14.
Ginestra, A, La Placa, MD, Saladino, F, Cassarà, D, Nagase, H, Vittorelli, ML. The amount and proteolytic content of vesicles shed by human cancer cell lines correlates with their in vitro invasiveness. Anticancer Res. 1998;18:3433-3437.
Google Scholar |
Medline |
ISI15.
Schwager, SC, Bordeleau, F, Zhang, J, Antonyak, MA, Cerione, RA, Reinhart-King, CA. Matrix stiffness regulates microvesicle-induced fibroblast activation. Am J Physiol Cell Physiol. 2019;317:C82-C92. doi:
10.1152/ajpcell.00418.2018.
Google Scholar |
Crossref |
Medline16.
Zaidi, N, Lupien, L, Kuemmerle, NB, Kinlaw, WB, Swinnen, JV, Smans, K. Lipogenesis and lipolysis: the pathways exploited by the cancer cells to acquire fatty acids. Prog Lipid Res. 2013;52:585-589. doi:
10.1016/j.plipres.2013.08.005.
Google Scholar |
Crossref |
Medline17.
Cadenas, C, Vosbeck, S, Edlund, K, et al. LIPG-promoted lipid storage mediates adaptation to oxidative stress in breast cancer. Int J Cancer. 2019;145:901-915. doi:
10.1002/ijc.32138.
Google Scholar |
Crossref |
Medline18.
Blücher, C, Zilberfain, C, Venus, T, et al. Single cell study of adipose tissue mediated lipid droplet formation and biochemical alterations in breast cancer cells. Analyst. 2019;144:5558-5570. doi:
10.1039/c9an00816k.
Google Scholar |
Crossref |
Medline19.
Fouad, TM, Ueno, NT, Yu, RK, et al. Distinct epidemiological profiles associated with inflammatory breast cancer (IBC): a comprehensive analysis of the IBC registry at The University of Texas MD Anderson Cancer Center. PLoS ONE. 2018;13:e0204372. doi:
10.1371/journal.pone.0204372.
Google Scholar |
Crossref20.
Blücher, C, Stadler, SC. Obesity and breast cancer: current insights on the role of fatty acids and lipid metabolism in promoting breast cancer growth and progression. Front Endocrinol. 2017;8:293. doi:
10.3389/fendo.2017.00293.
Google Scholar |
Crossref |
Medline21.
Stecklein, SR, Reddy, JP, Wolfe, AR, et al. Lack of breastfeeding history in parous women with inflammatory breast cancer predicts poor disease-free survival. J Cancer. 2017;8:1726-1732. doi:
10.7150/jca.20095.
Google Scholar |
Crossref |
Medline
留言 (0)