Lega BC, Kramer DR, Newman JG, Lee JYK (2011) Morphometric measurements of the anterior skull base for endoscopic transoral and transnasal approaches. Skull Base 21:65–70
2.Snyderman CH, Pant H, Carrau RL, Prevedello D, Gardner P, Kassam AB (2009) What are the limits of endoscopic sinus surgery? The expanded endonasal approach to the skull base. Keio J Med 58(3):152–160
3.Venkatraman G, Likosky DS, Zhou W, Finlayson SRG, Goodman DC (2010) Trends in endoscopic sinus surgery rates in the Medicare population. Arch Otolaryngol Head Neck Surg 136(5):426–430
4.Centers and P. for Disease Control (2009) National ambulatory medical care survey: 2009 summary tables. http://www.cdc.gov/nchs/data/ahcd/namcssummary/20109namcswebtables.pdf.
5.Pac E (2021) Position statement: intra-operative use of computer aided surgery position statement: intra-operative use of computer aided surgery. https://www.entnet.org/content/intra-operative-use-computer-aided-surgery
6.ARS (2019) Criteria for image guided surgery. https://www.american-rhinologic.org/index.php?option=com_content&view=article&id=35:criteria-for-image-guided-surgery&catid=26:position-statements&Itemid=197
7.Grimson WEL, Kikinis R, Jolesz FA, Black PM (1999) Image-guided surgery. Sci Am 280(6):62–69
8.Bhattacharyya N, Orlandi RR, Grebner J, Martinson M (2011) Cost burden of chronic rhinosinusitis: a claims-based study. Otolaryngol Head Neck Surg 144(3):440–445
9.Maniglia AJ (1991) Fatal and other major complications of endoscopic sinus surgery. Laryngoscope 101(4):349–354
10.Smith TL, Mace JC, Rudmik L, Schlosser RJ, Hwang PH, Alt JA, Soler ZM (2017) Comparing surgeon outcomes in endoscopic sinus surgery for chronic rhinosinusitis. Laryngoscope 127(1):14–21
11.Gliklich RE, Metson R (1995) The health impact of chronic sinusitis in patients seeking otolaryngologic care. Otolaryngol Head Neck Surg 113(1):104–109
12.Soler ZM, Wittenberg E, Schlosser RJ, Mace JC, Smith TL (2011) Health state utility values in patients undergoing endoscopic sinus surgery. Laryngoscope 121(12):2672–2678
13.Hoelzle F, Klein M, Schwerdtner O, Lueth T, Albrecht J, Hosten N, Felix R, Bier J (2001) Intraoperative computed tomography with the mobile ct Tomoscan m during surgical treatment of orbital fractures. Int J Oral Maxillofac Surg 30(1):26–31
14.Kim TT, Drazin D, Shweikeh F, Pashman R, Johnson JP (2014) Clinical and radiographic outcomes of minimally invasive percutaneous pedicle screw placement with intraoperative ct (o-arm) image guidance navigation. Neurosurg Focus 36(3):E1
15.Jackman AH, Palmer JN, Chiu AG, Kennedy DW (2008) Use of intraoperative ct scanning in endoscopic sinus surgery: a preliminary report. Am J Rhinol 22(2):170–174
16.Roth M, Lanza DC, Kennedy DW, Yousem D, Scanlan KA, Zinreich J (1995) Advantages and disadvantages of three-dimensional computed tomography intraoperative localization for functional endoscopic sinus surgery. Laryngoscope 105(12):1279–1286
17.Bolles RC, Baker HH, Marimont DH (1987) Epipolar-plane image analysis: an approach to determining structure from motion. Int J Comput Vis 1(1):7–55
18.Collins T, Compte B, Bartoli A (2011), Deformable shape-from-motion in laparoscopy using a rigid sliding window. In: MIUA, pp 173–178
19.Mahmoud N, Nicolau S, Keshk A, Ahmad M, Soler L, Marescaux J (2012) Fast 3d structure from motion with missing points from registration of partial reconstructions. In: Articulated motion and deformable objects, pp 173–183
20.Lo B, Chung AJ, Stoyanov D, Mylonas G, Yang GZ (2008) Real-time intra-operative 3d tissue deformation recovery. In: 5th IEEE international symposium on biomedical imaging: from nano to macro, ISBI 2008, vol 16, IEEE, Elsevier, pp 1387–1390
21.Röhl S, Bodenstedt S, Suwelack S, Kenngott H, Müller-Stich BP, Dillmann R, Speidel S (2012) Dense GPU-enhanced surface reconstruction from stereo endoscopic images for intraoperative registration. Med Phys 39(3):1632–1645
22.Horn BK, Brooks MJ (1989) Shape from shading. MIT press, New York
23.Prados E, Faugeras O (2006) Shape from shading. In: Handbook of mathematical models in computer vision, pp 375–388
24.Ciaccio EJ, Tennyson CA, Bhagat G, Lewis SK, Green PH (2013) Use of shape-from-shading to estimate three-dimensional architecture in the small intestinal lumen of celiac and control patients. Comput Methods Programs Biomed 111(3):676–684
25.Goncalves N, Roxo D, Barreto J, Rodrigues P (2015) Perspective shape from shading for wide-FOV near-lighting endoscopes. Neurocomputing 150:136–146
26.Karlsson N, Di Bernardo E, Ostrowski J, Goncalves L, Pirjanian P, Munich ME (2005) The VSLAM algorithm for robust localization and mapping. In: Proceedings of the 2005 IEEE international conference on robotics and automation, 2005. ICRA 2005, pp 24–29
27.Davison AJ, Reid ID, Molton ND, Stasse O (2007) Monoslam: real-time single camera slam. IEEE Trans Pattern Anal Mach Intell 29(6):1052–1067
28.Mahmood F, Durr NJ (2018) Deep learning and conditional random fields-based depth estimation and topographical reconstruction from conventional endoscopy. Med Image Anal 48:230–243
29.Liu X, Sinha A, Unberath M, Ishii M, Hager GD, Taylor RH, Reiter A (2018)Self-supervised learning for dense depth estimation in monocular endoscopy. In: OR 2.0 context-aware operating theaters, computer assisted robotic endoscopy, clinical image-based procedures, and skin image analysis, Springer, pp 128–138
30.Graham B (2000) Using an accelerometer sensor to measure human hand motion. PhD thesis, Massachusetts Institute of Technology
31.Landau HJ (1967) Sampling, data transmission, and the Nyquist rate. In: Proceedings of the IEEE, vol 55, no 10, pp 1701–1706
32.M. Inc. (2021) Medtronic stealthstation series brochure. http://www.medtronic.com/us-en/healthcare-professionals/products/neurological/surgical-navigation-systems/stealthstation.html
33.RoCAL (2020) Medtronic stealthstation motion data read software. https://gitlab.com/RoCALab/stealth_client
34.Li Y, Li S, Song Q, Liu H, Meng MQ-H (2014) Fast and robust data association using posterior based approximate joint compatibility test. IEEE Trans Ind Inf 10(1):331–339
35.Li Y, Olson EB (2010) Extracting general-purpose features from lidar data. In: 2010 IEEE International conference on robotics and automation (ICRA), IEEE, pp 1388–1393
36.Li Y, Hannaford B (2018) Soft-obstacle avoidance for redundant manipulators with recurrent neural network. In: 2018 IEEE/RSJ international conference on intelligent robots and systems (IROS), IEEE, pp 1–6
37.Di Zenzo S (1986) A note on the gradient of a multi-image. Comput Vis Gr Image Process 33(1):116–125
38.Rasmussen CE (2004) Gaussian processes in machine learning. Springer, Berlin, pp 63–71
39.Li Y, Hannaford B (2017) Gaussian process regression for sensorless grip force estimation of cable-driven elongated surgical instruments. IEEE Robot Autom Lett 2(3):1312–1319
40.Li Y, Bly R, Harbison R, Humphreys I, Whipple M, Hannaford B, Moe K (2017) Anatomical region segmentation for objective surgical skill assessment with operating room motion data. J Neurol Surg Part B Skull Base 369:1434–1442
41.Raudaschl P, Zaffino P, Sharp G, Spadea M, Chen A, Dawant B, Albrecht T, Gass T, Langguth C, Luthi M, Jung F, Knapp O, Wesarg S, Haworth R, Bowes M, Ashman A, Guillard G, Brett A, Vincent G, Arteaga M, Peña D, Dominguez G, Aghdasi N, Li Y, Berens A, Moe K, Hannaford B, Schubert R, Fritscher K (2017) Evaluation of segmentation methods on head and neck CT: auto-segmentation challenge 2015. Med Phys 44(5):2020–2036
留言 (0)