Franchini M, Mannucci PM (2014) The history of hemophilia. Semin Thromb Hemost 40:571–576
Article CAS PubMed Google Scholar
Hoyer LW (1994) Hemophilia a. New England Journal of Medicine, Mass Medical Soc 330:38–47
Berntorp E, Shapiro AD (2012) Modern haemophilia care. The Lancet, Elsevier 379:1447–1456
Iorio A, Stonebraker JS, Chambost H, Makris M, Coffin D, Herr C, Germini F (2019) Data and demographics committee of the world federation of hemophilia. establishing the prevalence and prevalence at birth of hemophilia in males: a meta-analytic approach using national registries. Ann Intern Med 171:540–546
Ferreira AA, Leite ICG, Bustamante-Teixeira MT, Corrêa CSL, da Cruz DT, Rodrigues D et al (2013) Health-related quality of life in hemophilia: results of the hemophilia-specific quality of life index (haem-a-qol) at a brazilian blood center. Revista brasileira de hematologia e hemoterapia, SciELO Brasil 35:314–318
Walsh M, Macgregor D, Stuckless S, Barrett B, Kawaja M, Scully M-F (2008) Health-related quality of life in a cohort of adult patients with mild hemophilia a. Journal of Thrombosis and Haemostasis, Elsevier 6:755–761
Hoots, W.K. and Shapiro, A.D. (2014) Clinical Manifestations and Diagnosis of Hemophilia. UpToDate Nov, 11.
Bolton-Maggs PHB, Pasi KJ (2003) Haemophilias a and b. The Lancet, Elsevier 361:1801–1809
Luck JV Jr, Silva M, Rodriguez-Merchan CE, Ghalambor N, Zahiri CA, Finn RS (2004) Hemophilic Arthropathy. JAAOS-Journal of the American Academy of Orthopaedic Surgeons, LWW 12:234–245
Dehaven KE (1980) Diagnosis of acute knee injuries with hemarthrosis. The American journal of sports medicine, SAGE Publications 8:9–14
Querol F, Rodriguez-Merchan EC (2012) The role of ultrasonography in the diagnosis of the musculo-skeletal problems of haemophilia. Haemophilia, Wiley Online Library 18:e215–e226
Bakeer N, Dover S, Babyn P, Feldman BM, von Drygalski A, Doria AS, Ignas DM, Abad A, Bailey C, Beggs I, Chang EY, Dunn A, Funk S, Gibikote S, Goddard N, Hilliard P, Keshava SN, Kruse-Jarres R, Li Y, Lobet S, Manco-Johnson M, Martinoli C, O’Donnell JS, Papakonstantinou O, Pergantou H, Poonnoose P, Querol F, Srivastava A, Steiner B, Strike K, Timmer M, Tyrrell PN, Vidarsson L, Blanchette VS (2021) Musculoskeletal Ultrasound in Hemophilia: Results and Recommendations from a Global Survey and Consensus Meeting. Research and Practice in Thrombosis and Haemostasis, Elsevier 5:e12531. https://doi.org/10.1002/RTH2.12531
Nguyen S, Lu X, Ma Y, Du J, Chang EY, von Drygalski A (2018) Musculoskeletal Ultrasound for Intra-articular Bleed Detection: A Highly Sensitive Imaging Modality Compared with Conventional Magnetic Resonance Imaging. Journal of Thrombosis and Haemostasis, Elsevier 16:490–499. https://doi.org/10.1111/JTH.13930
Dick, S. (2019) Artificial Intelligence. Harvard Data Sci Rev 1 (1).
Winston PH (1992) Artificial Intelligence. Addison-Wesley Longman Publishing Co., Inc
Alzubaidi L, Zhang J, Humaidi AJ, Al-Dujaili A, Duan Y, Al-Shamma O, Santamaría J, Fadhel MA, Al-Amidie M, Farhan L (2021) Review of Deep Learning: Concepts, CNN Architectures, Challenges, Applications, Future Directions. Journal of Big Data 8:1–74. https://doi.org/10.1186/S40537-021-00444-8
Van Ginneken B, Setio AAA, Jacobs C, Ciompi F (2015) Off-the-Shelf Convolutional Neural Network Features for Pulmonary Nodule Detection in Computed Tomography Scans. IEEE 12th International Symposium on Biomedical Imaging (ISBI). https://doi.org/10.1109/ISBI.2015.7163869
Lakhani P, Sundaram B (2017) Deep learning at chest radiography: Automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology, Radiological Society of North America 284:574–582
Bejnordi BE, Veta M, Van Diest PJ, Van Ginneken B, Karssemeijer N, Litjens G, Van Der Laak JAWM, Hermsen M, Manson QF, Balkenhol M et al (2017) Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. Jama, American Medical Association 318:2199–2210
Zuluaga-Gomez J, Al Masry Z, Benaggoune K, Meraghni S, Zerhouni N (2021) A CNN-based methodology for breast cancer diagnosis using thermal images. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, Taylor & Francis 9:131–145. https://doi.org/10.1080/21681163.2020.1824685
Chen L, Wu Y et al (2018) MRI Tumor Segmentation with Densely Connected 3D CNN. SPIE 10574:357–364. https://doi.org/10.1117/12.2293394
Rouhi R, Jafari M, Kasaei S, Keshavarzian P (2015) Benign and Malignant Breast Tumors Classification Based on Region Growing and CNN Segmentation. Expert Systems with Applications, Pergamon 42:990–1002. https://doi.org/10.1016/J.ESWA.2014.09.020
Reshi AA, Rustam F, Mehmood A, Alhossan A, Alrabiah Z, Ahmad A, Alsuwailem H, Choi GS (2021) An Efficient CNN Model for COVID-19 Disease Detection Based on X-Ray Image Classification. Complexity, John Wiley & Sons Ltd 2021:6621607. https://doi.org/10.1155/2021/6621607
Soni M, Khan IR, Babu KS, Nasrullah S, Madduri A, Rahin SA (2022) Light Weighted Healthcare CNN Model to Detect Prostate Cancer on Multiparametric MRI. Computational Intelligence and Neuroscience, John Wiley & Sons Ltd 2022:5497120. https://doi.org/10.1155/2022/5497120
Togacar, M., Comert, Z., Ergen, B. and Budak, U. (2019) Brain Hemorrhage Detection Based on Heat Maps, Autoencoder and CNN Architecture. 1st International Informatics and Software Engineering Conference: Innovative Technologies for Digital Transformation, IISEC 2019 - Proceedings, Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/UBMYK48245.2019.8965576.
Saric, M., Russo, M., Stella, M. and Sikora, M. (2019) CNN-Based Method for Lung Cancer Detection in Whole Slide Histopathology Images. 2019 4th International Conference on Smart and Sustainable Technologies, SpliTech 2019, Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.23919/SPLITECH.2019.8783041.
Park SH (2021) Artificial Intelligence for Ultrasonography: Unique Opportunities and Challenges. Ultrasonography, Korean Society of Ultrasound in Medicine 40:3
Shen YT, Chen L, Yue WW, Xu HX (2021) Artificial Intelligence in Ultrasound. European Journal of Radiology, Elsevier 139:109717. https://doi.org/10.1016/J.EJRAD.2021.109717
Shahzad A, Mushtaq A, Sabeeh AQ, Ghadi YY, Mushtaq Z, Arif S et al (2023) Automated Uterine Fibroids Detection in Ultrasound Images Using Deep Convolutional Neural Networks. Healthcare. https://doi.org/10.3390/HEALTHCARE11101493
Article PubMed PubMed Central Google Scholar
Inui A, Mifune Y, Nishimoto H, Mukohara S, Fukuda S, Kato T, Furukawa T, Tanaka S, Kusunose M, Takigami S, Ehara Y, Kuroda R (2023) Detection of Elbow OCD in the Ultrasound Image by Artificial Intelligence Using YOLOv8. Appl Sci. https://doi.org/10.3390/APP13137623
Gupta P, Basu S, Rana P, Dutta U, Soundararajan R, Kalage D, Chhabra M, Singh S, Yadav TD, Gupta V, Kaman L, Das CK, Gupta P, Saikia UN, Srinivasan R, Sandhu MS, Arora C (2024) Deep-Learning Enabled Ultrasound Based Detection of Gallbladder Cancer in Northern India: A Prospective Diagnostic Study. The Lancet Regional Health - Southeast Asia, Elsevier Ltd 24:100279. https://doi.org/10.1016/j.lansea.2023.100279
Sahu A, Das PK, Meher S (2023) High Accuracy Hybrid CNN Classifiers for Breast Cancer Detection Using Mammogram and Ultrasound Datasets. Biomedical Signal Processing and Control, Elsevier 80:104292. https://doi.org/10.1016/J.BSPC.2022.104292
Al-Battal, A.F., Gong, Y., Xu, L., Morton, T., Du, C., Bu, Y., Lerman, I.R., Madhavan, R. and Nguyen, T.Q. (2021) A CNN Segmentation-Based Approach to Object Detection and Tracking in Ultrasound Scans with Application to the Vagus Nerve Detection. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, Institute of Electrical and Electronics Engineers Inc., 3322–3327. https://doi.org/10.1109/EMBC46164.2021.9630522.
Karras, T., Aila, T., Laine, S. and Lehtinen, J. (2017) Progressive Growing of GANs for Improved Quality, Stability, and Variation. CoRR, abs/1710.10196. http://arxiv.org/abs/1710.10196.
Sun H, Lu Z, Fan R, Xiong W, Xie K, Ni X, Yang J (2021) Research on Obtaining Pseudo CT Images Based on Stacked Generative Adversarial Network. Quant Imaging Med Surg. https://doi.org/10.21037/QIMS-20-1019
Article PubMed PubMed Central Google Scholar
Chen RJ, Lu MY, Chen TY, Williamson DFK, Mahmood F (2021) Synthetic Data in Machine Learning for Medicine and Healthcare. Nature Biomedical Engineering, Nature Publishing Group UK London 5:493–497
Nagao A, Inagaki Y, Nogami K, Yamasaki N, Iwasaki F, Liu Y, Murakami Y, Ito T, Takedani H (2024) Artificial Intelligence-Assisted Ultrasound Imaging in Hemophilia: Research, Development, and Evaluation of Hemarthrosis and Synovitis Detection. Research and Practice in Thrombosis and Haemostasis, Elsevier 8:102439. https://doi.org/10.1016/J.RPTH.2024.102439
Gualtierotti R, Arcudi S, Ciavarella A, Colussi M, Mascetti S, Bettini C, Peyvandi F (2022) A Computer-Aided Diagnosis Tool for the Detection of Hemarthrosis By Remote Joint Ultrasound in Patients with Hemophilia. Blood, American Society of Hematology 140:464–465. https://doi.org/10.1182/BLOOD-2022-163690
Katakis S, Barotsis N, Kakotaritis A, Tsiganos P, Economou G, Panagiotopoulos E, Panayiotakis G (2023) Generation of Musculoskeletal Ultrasound Images with Diffusion Models. BioMedInformatics. https://doi.org/10.3390/BIOMEDINFORMATICS3020027
Alsinan AZ, Rule C, Vives M, Patel VM, Hacihaliloglu I (2020) GAN-Based Realistic Bone Ultrasound Image and Label Synthesis for Improved Segmentation. Lect Notes Comput Sci. https://doi.org/10.1007/978-3-030-59725-2_77/FIGURES/2
Escobar M, Castillo A, Romero A, Arbeláez P (2020) Ultragan: Ultrasound Enhancement through Adversarial Generation. Lect Notes Comput Sci. https://doi.org/10.1007/978-3-030-59520-3_13/TABLES/2
Mendez, M., Sundararaman, S., Probyn, L. and Tyrrell, P.N. (2023) Approaches and Limitations of Machine Learni
留言 (0)