Cardiac biomarkers as indicators of right ventricular dysfunction and recovery in chronic thromboembolic pulmonary hypertension patients after balloon pulmonary angioplasty therapy – a cardiac magnetic resonance imaging cohort study

1. Kim, NH, Delcroix, M, Jais, X, et al. Chronic thromboembolic pulmonary hypertension. Eur Respir J 2019; 53: 1801915.
Google Scholar | Crossref | Medline2. Simonneau, G, Torbicki, A, Dorfmuller, P, et al. The pathophysiology of chronic thromboembolic pulmonary hypertension. Eur Respir Rev 2017; 26: 160112.
Google Scholar | Crossref | Medline3. Delcroix, M, Lang, I, Pepke-Zaba, J, et al. Long-term outcome of patients with Chronic Thromboembolic Pulmonary Hypertension (CTEPH): results from an international prospective registry. Circulation 2016; 133: 859–871.
Google Scholar | Crossref | Medline | ISI4. Wilkens, H, Konstantinides, S, Lang, IM, et al. Chronic thromboembolic pulmonary hypertension (CTEPH): updated recommendations from the Cologne Consensus Conference 2018. Int J Cardiol 2018; 272s: 69–78.
Google Scholar | Crossref | Medline5. Olsson, KM, Wiedenroth, CB, Kamp, JC, et al. Balloon pulmonary angioplasty for inoperable patients with chronic thromboembolic pulmonary hypertension: the initial German experience. Eur Resp J 2017; 49: 1602409.
Google Scholar | Crossref | Medline | ISI6. Guth, S, Wiedenroth, CB, Kramm, T, et al. Pulmonary endarterectomy for the treatment of chronic thromboembolic pulmonary hypertension. Expert Rev Respir Med 2016; 10: 673–684.
Google Scholar | Crossref | Medline7. Van De Veerdonk, MC, Kind, T, Marcus, JT, et al. Progressive right ventricular dysfunction in patients with pulmonary arterial hypertension responding to therapy. J Am Coll Cardiol 2011; 58: 2511–2519.
Google Scholar | Crossref | Medline | ISI8. Spruijt, OA, Di Pasqua, MC, Bogaard, HJ, et al. Serial assessment of right ventricular systolic function in patients with precapillary pulmonary hypertension using simple echocardiographic parameters: a comparison with cardiac magnetic resonance imaging. J Cardiol 2017; 69: 182–188.
Google Scholar | Crossref | Medline | ISI9. van de Veerdonk, MC, Bogaard, HJ, Voelkel, NF. The right ventricle and pulmonary hypertension. Hear Fail Rev 2016; 21: 259–271.
Google Scholar | Crossref | Medline10. Waziri, F, Ringgaard, S, Mellemkjær, S, et al. Long-term changes of right ventricular myocardial deformation and remodeling studied by cardiac magnetic resonance imaging in patients with chronic thromboembolic pulmonary hypertension following pulmonary thromboendarterectomy. Int J Cardiol 2020; 300: 282–288.
Google Scholar | Crossref | Medline11. Kriechbaum, SD, Wiedenroth, CB, Wolter, J-SS, et al. N-terminal pro-B-type natriuretic peptide for monitoring after balloon pulmonary angioplasty for chronic thromboembolic pulmonary hypertension. J Hear Lung Transpl 2018; 37: 639–646.
Google Scholar | Crossref | Medline12. Kriechbaum, SD, Scherwitz, L, Wiedenroth, CB, et al. Mid-regional pro-atrial natriuretic peptide and copeptin as indicators of disease severity and therapy response in CTEPH. ERJ Open Res 2020; 6: 00356–02020.
Google Scholar | Crossref | Medline13. Pascual-Figal, DA, Januzzi, JL. The biology of ST2: the International ST2 Consensus Panel. Am J Cardiol 2015; 115: 3b–7b.
Google Scholar | Crossref | Medline | ISI14. Funayama, A, Shishido, T, Netsu, S, et al. Serum pregnancy-associated plasma protein A in patients with heart failure. J Card Fail 2011; 17: 819–826.
Google Scholar | Crossref | Medline | ISI15. Wiedenroth, CB, Ghofrani, HA, Adameit, MSD, et al. Sequential treatment with riociguat and balloon pulmonary angioplasty for patients with inoperable chronic thromboembolic pulmonary hypertension. Pulm Circ 2018; 8: 2045894018783996.
Google Scholar | SAGE Journals | ISI16. Huang, KC, Lin, JL, Lin, LC. Transthoracic echocardiography: improved practice by real-time 3D acquisition and automation. In: Dumitrescu, S, Ţintoiu, I, Underwood, M (eds) Right heart pathology: from mechanism to management. Heidelberg: Springer, 2018, pp. 573–586.
Google Scholar | Crossref17. Berman, M, Gopalan, D, Sharples, L, et al. Right ventricular reverse remodeling after pulmonary endarterectomy: magnetic resonance imaging and clinical and right heart catheterization assessment. Pulm Circ 2014; 4: 36–44.
Google Scholar | SAGE Journals | ISI18. Schoenfeld, C, Hinrichs, JB, Olsson, KM, et al. Cardio-pulmonary MRI for detection of treatment response after a single BPA treatment session in CTEPH patients. Eur Radiol 2019; 29: 1693–1702.
Google Scholar | Crossref | Medline19. Fukui, S, Ogo, T, Morita, Y, et al. Right ventricular reverse remodelling after balloon pulmonary angioplasty. Eur Respir J 2014; 43: 1394–1402.
Google Scholar | Crossref | Medline | ISI20. Kawel-Boehm, N, Maceira, A, Valsangiacomo-Buechel, ER, et al. Normal values for cardiovascular magnetic resonance in adults and children. J Cardiovasc Magn Reson 2015; 17: 29.
Google Scholar | Crossref | Medline21. Foppa, M, Arora, G, Gona, P, et al. Right ventricular volumes and systolic function by cardiac magnetic resonance and the impact of sex, age, and obesity in a longitudinally followed cohort free of pulmonary and cardiovascular disease: the Framingham heart study. Circ Cardiovasc Imaging 2016; 9: e003810.
Google Scholar | Crossref | Medline22. Reesink, HJ, Marcus, JT, Tulevski, II, et al . Reverse right ventricular remodeling after pulmonary endarterectomy in patients with chronic thromboembolic pulmonary hypertension: utility of magnetic resonance imaging to demonstrate restoration of the right ventricle. J Thorac Cardiovasc Surg 2007; 4: 36–44.
Google Scholar23. Kriechbaum, SD, Wiedenroth, CB, Peters, K, et al. Galectin-3, GDF-15, and sST2 for the assessment of disease severity and therapy response in patients suffering from inoperable chronic thromboembolic pulmonary hypertension. Biomarkers 2020; 25: 578–586.
Google Scholar | Crossref | Medline24. Kriechbaum, SD, Rudolph, F, Wiedenroth, CB, et al. Pregnancy-associated plasma protein A – a new indicator of pulmonary vascular remodeling in chronic thromboembolic pulmonary hypertension? Respir Res 2020; 21: 204.
Google Scholar | Crossref | Medline25. Reesink, HJ, Tulevski, II, Marcus, JT, et al. Brain natriuretic peptide as noninvasive marker of the severity of right ventricular dysfunction in chronic thromboembolic pulmonary hypertension. Ann Thorac Surg 2007; 84: 537–543.
Google Scholar | Crossref | Medline | ISI26. Carlomagno, G, Messalli, G, Melillo, RM, et al. Serum soluble ST2 and interleukin-33 levels in patients with pulmonary arterial hypertension. Int J Cardiol 2013; 168: 1545–1547.
Google Scholar | Crossref | Medline27. de Boer, RA, Daniels, LB, Maisel, AS, et al. State of the art: newer biomarkers in heart failure. Eur J Heart Fail 2015; 17: 559–569.
Google Scholar | Crossref | Medline | ISI28. Ponikowski, P, Voors, AA, Anker, SD, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Hear J 2015; 37: 2129–2200.
Google Scholar | Crossref29. Galiè, N, Humbert, M, Vachiery, J-L, et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: the joint task force for the diagnosis and treatment of pulmonary hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): endorse. Eur Hear J 2016; 37: 67–119.
Google Scholar | Crossref | Medline | ISI30. Mello, MM, Watte, G, Altmayer, S, et al. Relationship between right atrium area and right ventricular ejection fraction on magnetic resonance imaging: comparison with other prognostic markers in patients with pulmonary arterial hypertension. Radiol Bras 2019; 52: 351–355.
Google Scholar | Crossref | Medline31. Nakagawa, Y, Nishikimi, T, Kuwahara, K. Atrial and brain natriuretic peptides: hormones secreted from the heart. Peptides 2019; 111: 18–25.
Google Scholar | Crossref | Medline32. Mueller, T, Dieplinger, B. The Presage((R)) ST2 assay: analytical considerations and clinical applications for a high-sensitivity assay for measurement of soluble ST2. Expert Rev Mol Diagn 2013; 13: 13–30.
Google Scholar | Crossref | Medline33. Luk, KS, Ip, C, Gong, MQ, et al. A meta-analysis of soluble suppression of tumorigenicity 2 (sST2) and clinical outcomes in pulmonary hypertension. J Geriatr Cardiol 2017; 14: 766–771.
Google Scholar | Medline34. Weir, RA, Miller, AM, Murphy, GE, et al. Serum soluble ST2: a potential novel mediator in left ventricular and infarct remodeling after acute myocardial infarction. J Am Coll Cardiol 2010; 55: 243–250.
Google Scholar | Crossref | Medline | ISI35. Sanada, S, Hakuno, D, Higgins, LJ, et al. IL-33 and ST2 comprise a critical biomechanically induced and cardioprotective signaling system. J Clin Invest 2007; 117: 1538–1549.
Google Scholar | Crossref | Medline | ISI36. Sanchez-Mas, J, Lax, A, Asensio-Lopez Mdel, C, et al. Modulation of IL-33/ST2 system in postinfarction heart failure: correlation with cardiac remodelling markers. Eur J Clin Invest 2014; 44: 643–651.
Google Scholar | Crossref | Medline37. Chida, A, Sato, H, Shintani, M, et al. Soluble ST2 and N-terminal pro-brain natriuretic peptide combination. Useful biomarker for predicting outcome of childhood pulmonary arterial hypertension. Circ J 2014; 78: 436–442.
Google Scholar | Crossref | Medline38. Mirna, M, Rohm, I, Jirak, P, et al. Analysis of novel cardiovascular biomarkers in patients with pulmonary hypertension (PH). Hear Lung Circ 2020; 29: 337–344.
Google Scholar | Crossref | Medline39. Plácido, R, Cortez-Dias, N, Robalo Martins, S, et al. Prognostic stratification in pulmonary hypertension: a multi-biomarker approach. Rev Port Cardiol (English Ed) 2017; 36: 111–125.
Google Scholar | Crossref | Medline40. Lawrence, JB, Oxvig, C, Overgaard, MT, et al. The insulin-like growth factor (IGF)-dependent IGF binding protein-4 protease secreted by human fibroblasts is pregnancy-associated plasma protein-A. Proc Natl Acad Sci U S A 1999; 96: 3149–3153.
Google Scholar | Crossref | Medline | ISI41. Troncoso, R, Ibarra, C, Vicencio, JM, et al. New insights into IGF-1 signaling in the heart. Trends Endocrinol Metab 2014; 25: 128–137.
Google Scholar | Crossref | Medline42. Pfäffle, R, Kiess, W, Klammt, J. Downstream insulin-like growth factor. Endocr Dev 2012; 23: 42–51.
Google Scholar | Crossref | Medline43. Yang, Q, Sun, M, Ramchandran, R, et al. IGF-1 signaling in neonatal hypoxia-induced pulmonary hypertension: role of epigenetic regulation. Vascul Pharmacol 2015; 73: 20–31.
Google Scholar | Crossref | Medline44. Sun, M, Ramchandran, R, Chen, J, et al. Smooth muscle insulin-like growth factor-1 mediates hypoxia-induced pulmonary hypertension in neonatal mice. Am J Respir Cell Mol Biol 2016; 55: 779–791.
Google Scholar | Crossref | Medline45. Broch, K, Murbraech, K, Ragnarsson, A, et al. Echocardiographic evidence of right ventricular functional improvement after balloon pulmonary angioplasty in chronic thromboembolic pulmonary hypertension. J Hear Lung Transpl 2016; 35: 80–86.
Google Scholar | Crossref | Medline | ISI46. Sumimoto, K, Tanaka, H, Mukai, J, et al. Effects of balloon pulmonary angioplasty for chronic thromboembolic pulmonary hypertension on remodeling in right-sided heart. Int J Cardiovasc Imaging 2020; 36: 1053–1060.
Google Scholar | Crossref |

留言 (0)

沒有登入
gif