1. Wright, RW, Wright, RW, Huston, LJ, et al. Descriptive epidemiology of the Multicenter ACL Revision Study (MARS) cohort. Am J Sports Med 2010; 38: 1979–1986.
Google Scholar |
SAGE Journals |
ISI2. Trojani, C., Sbihi, A., Djian, P., et al. Causes for failure of ACL reconstruction and influence of meniscectomies after revision. Knee Surg Sports Traumatol Arthrosc 2011; 19: 196–201.
Google Scholar |
Crossref |
Medline |
ISI3. Crain, EH, Fithian, DC, Paxton, EW, et al. Variation in anterior cruciate ligament scar pattern: does the scar pattern affect anterior laxity in anterior cruciate ligament-deficient knees? Arthrosc J Arthroscopic Relat Surg 2005; 21: 19–24.
Google Scholar |
Crossref |
Medline |
ISI4. Kim, MK, Lee, SR, Ha, JK, et al.. Comparison of second-look arthroscopic findings and clinical results according to the amount of preserved remnant in anterior cruciate ligament reconstruction. Knee 2014; 21: 774–778.
Google Scholar |
Crossref |
Medline5. Lee, BI, Kim, CH, Jang, BW, et al. Preservation of the tibial remnant in anterior cruciate ligament reconstruction may improve postoperative proprioceptive function. Orthopedics 2020; 43: e231–e236.
Google Scholar |
Crossref |
Medline6. Nakase, J., Toratani, T., Kosaka, M., et al. Roles of ACL remnants in knee stability. Knee Surg Sports Traumatol Arthrosc 2013; 21: 2101–2106.
Google Scholar |
Crossref |
Medline |
ISI7. Zhang, S, Matsumoto, T, Uefuji, A, et al. Anterior cruciate ligament remnant tissue harvested within 3-months after injury predicts higher healing potential. BMC Musculoskelet Disord 2015; 16: 390.
Google Scholar |
Crossref |
Medline |
ISI8. Nakase, J, Toratani, T, Kosaka, M, et al.. Technique of anatomical single bundle ACL reconstruction with rounded rectangle femoral dilator. Knee 2016; 23: 91–96.
Google Scholar |
Crossref |
Medline9. Oshima, T, Nakase, J, Numata, H, et al. The cross-sectional shape of the fourfold semitendinosus tendon is oval, not round. J Exp Orthopaedics 2016; 3: 28.
Google Scholar |
Crossref |
Medline10. Takata, Y, Nakase, J, Oshima, T, et al. No difference in the graft shift between a round and a rounded rectangular femoral tunnel for anterior cruciate ligament reconstruction: an experimental study. Arch Orthopaedic Trauma Surg 2018; 138: 1249–1255.
Google Scholar |
Crossref |
Medline11. Wen, Z, Zhang, H, Yan, W, et al. Oval femoral tunnel technique is superior to the conventional round femoral tunnel technique using the hamstring tendon in anatomical anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 2020; 28: 2245–2254.
Google Scholar |
Crossref |
Medline12. Zhao, F, Hu, X, Zhang, J, et al. A more flattened bone tunnel has a positive effect on tendon-bone healing in the early period after ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 2019; 27: 3543–3551.
Google Scholar |
Crossref |
Medline13. Koga, H, Muneta, T, Yagishita, K, et al. Evaluation of a behind-remnant approach for femoral tunnel creation in remnant-preserving double-bundle anterior cruciate ligament reconstruction - Comparison with a standard approach. Knee 2015; 22: 249–255.
Google Scholar |
Crossref |
Medline |
ISI14. Muneta, T, Koga, H, Nakamura, T, et al. A new behind-remnant approach for remnant-preserving double-bundle anterior cruciate ligament reconstruction compared with a standard approach. Knee Surg Sports Traumatol Arthrosc 2015; 23: 3743–3749.
Google Scholar |
Crossref |
Medline15. Tensho, K, Iwaasa, T, Shimodaira, H, et al. Anatomical remnant-preserving double-bundle ACL reconstruction with a new remnant augmentation technique. Arthrosc Tech 2020; 9: e283–e290.
Google Scholar |
Crossref |
Medline16. Bernard, M, Hertel, P, Hornung, H, et al. Femoral insertion of the ACL. Radiographic quadrant method. Am J Knee Surg 1997; 10: 14–22; discussion 21-12.
Google Scholar |
Medline17. Forsythe, B, Kopf, S, Wong, AK, et al. The location of femoral and tibial tunnels in anatomic double-bundle anterior cruciate ligament reconstruction analyzed by three-dimensional computed tomography models. J Bone Joint Surg Am 2010; 92: 1418–1426.
Google Scholar |
Crossref |
Medline |
ISI18. Oshima, T, Putnis, S, Grasso, S, et al. Graft size and orientation within the femoral notch affect graft healing at 1 year after anterior cruciate ligament reconstruction. Am J Sports Med 2020; 48: 99–108.
Google Scholar |
SAGE Journals |
ISI19. Irrgang, JJ, Anderson, AF, Boland, AL, et al. Development and validation of the international knee documentation committee subjective knee form. Am J Sports Med 2001; 29: 600–613.
Google Scholar |
SAGE Journals |
ISI20. Nakamura, N, Takeuchi, R, Ishikawa, H, et al. Cross-cultural adaptation and validation of the Japanese knee injury and osteoarthritis outcome score (KOOS). J Orthopaedic Sci 2011; 16: 516–523.
Google Scholar |
Crossref |
Medline |
ISI21. Nawabi, DH, Tucker, S, Schafer, KA, et al. ACL fibers near the lateral intercondylar ridge are the most load bearing during stability examinations and isometric through passive flexion. Am J Sports Med 2016; 44: 2563–2571.
Google Scholar |
SAGE Journals |
ISI22. Śmigielski, R, Zdanowicz, U, Drwięga, M, et al. Ribbon like appearance of the midsubstance fibres of the anterior cruciate ligament close to its femoral insertion site: a cadaveric study including 111 knees. Knee Surg Sports Traumatol Arthrosc 2015; 23: 3143–3150.
Google Scholar |
Crossref |
Medline |
ISI23. Śmigielski, R, Zdanowicz, U, Drwięga, M, et al. The anatomy of the anterior cruciate ligament and its relevance to the technique of reconstruction. Bone Joint J 2016; 98-b: 1020–1026.
Google Scholar |
Crossref |
Medline24. Kondo, E, Merican, AM, Yasuda, K, et al. Biomechanical comparison of anatomic double-bundle, anatomic single-bundle, and nonanatomic single-bundle anterior cruciate ligament reconstructions. Am J Sports Med 2011; 39: 279–288.
Google Scholar |
SAGE Journals |
ISI25. Wan, F, Chen, T, Ge, Y, et al. Effect of nearly isometric ACL reconstruction on graft-tunnel motion: A quantitative clinical study. Orthopaedic J Sports Med 2019; 7: 2325967119890382.
Google Scholar |
SAGE Journals |
ISI26. Xu, H, Zhang, C, Zhang, Q, et al. A systematic review of anterior cruciate ligament femoral footprint location evaluated by quadrant method for single-bundle and double-bundle anatomic reconstruction. Arthrosc J Arthroscopic Relat Surg 2016; 32: 1724–1734.
Google Scholar |
Crossref |
Medline |
ISI27. Robinson, J, Inderhaug, E, Harlem, T, et al. Anterior cruciate ligament femoral tunnel placement: An analysis of the intended versus achieved position for 221 international high-volume ACL surgeons. Am J Sports Med 2020; 48: 1088–1099.
Google Scholar |
SAGE Journals |
ISI28. Won, SH, Lee, BI, Park, SY, et al. Outcome differences of remnant- preserving versus non-preserving methods in arthroscopic anterior cruciate ligament reconstruction: a meta-analysis with subgroup analysis. Knee Surg Relat Res 2020; 32: 7.
Google Scholar |
Crossref |
Medline29. Koga, H, Muneta, T, Yagishita, K, et al. Effect of femoral tunnel position on graft tension curves and knee stability in anatomic double-bundle anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 2014; 22: 2811–2820.
Google Scholar |
Crossref |
Medline |
ISI30. Takata, Y., Nakase, J., Numata, H., et al. Computed tomography value and tunnel enlargement of round and rounded rectangular femoral bone tunnel for anterior cruciate ligament reconstruction. Arch Orthopaedic Trauma Surg 2016; 136: 1587–1594.
Google Scholar |
Crossref |
Medline31. Chen, L, Wu, Y, Lin, G, et al. Graft bending angle affects allograft tendon maturity early after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 2018; 26: 3048–3054.
Google Scholar |
Crossref |
Medline32. Tashiro, Y, Irarrázaval, S, Osaki, K, et al. Comparison of graft bending angle during knee motion after outside-in, trans-portal and trans-tibial anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 2017; 25: 129–137.
Google Scholar |
Crossref |
Medline33. Tashiro, Y, Gale, T, Sundaram, V, et al. The graft bending angle can affect early graft healing after anterior cruciate ligament reconstruction: In vivo analysis with 2 years' follow-up. Am J Sports Med 2017; 45: 1829–1836.
Google Scholar |
SAGE Journals |
ISI34. Park, JS, Park, JH, Wang, JH, et al. Comparison of femoral tunnel geometry, using in vivo 3-dimensional computed tomography, during transportal and outside-in single-bundle anterior cruciate ligament reconstruction techniques. Arthrosc J Arthroscopic Relat Surg 2015; 31: 83–91.
Google Scholar |
Crossref |
Medline |
ISI35. Nakayama, H, Kambara, S, Iseki, T, et al. Double-bundle anterior cruciate ligament reconstruction with and without remnant preservation - Comparison of early postoperative outcomes and complications. The Knee 2017; 24: 1039–1046.
Google Scholar |
Crossref |
Medline36. Naraoka, T, Kimura, Y, Tsuda, E, et al. Is remnant preservation truly beneficial to anterior cruciate ligament reconstruction healing? clinical and magnetic resonance imaging evaluations of remnant-preserved reconstruction. Am J Sports Med 2017; 45: 1049–1058.
Google Scholar |
SAGE Journals |
ISI37. Wang, H, Liu, Z, Li, Y, et al. Is remnant preservation in anterior cruciate ligament reconstruction superior to the standard technique? A systematic review and meta-analysis. Biomed Res Int 2019; 2019: 1652901.
Google Scholar |
Crossref |
Medline38. Lee, JK., Jo, S., Lee, YL, et al. Anterior cruciate ligament remnant cells have different potentials for cell differentiation based on their location. Scientific Rep 2020; 10: 3097.
Google Scholar |
Crossref |
Medline39. Novaretti, JV, Astur, DC, Casadio, D, et al. Higher gene expression of healing factors in anterior cruciate ligament remnant in acute anterior cruciate ligament tear. Am J Sports Med 2018; 46: 1583–1591.
Google Scholar |
SAGE Journals |
ISI40. Iriuchishima, T, Goto, B, Ryu, K, et al. The Blumensaat's line morphology influences to the femoral tunnel position in anatomical ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 2019; 27: 3638–3643.
Google Scholar |
Crossref |
Medline
留言 (0)