Targeted Optical Neural Stimulation: A New Era for Personalized Medicine

Agarwal, A, Tan, X, Xu, Y, Richter, CP. 2021. Channel interaction during infrared light stimulation in the cochlea. Lasers Surg Med. Epub 21 Jan 2021. doi:10.1002/lsm.23360
Google Scholar | Crossref | Medline Albert, ES, Bec, JM, Desmadryl, G, Chekroud, K, Travo, C, Gaboyard, S, and others. 2012. TRPV4 channels mediate the infrared laser-evoked response in sensory neurons. J Neurophysiol 107(12):3227–34.
Google Scholar | Crossref | Medline Andrei, AR, Pojoga, S, Janz, R, Dragoi, V. 2019. Integration of cortical population signals for visual perception. Nat Commun 10(1):3832.
Google Scholar | Crossref | Medline Angelucci, A, Bijanzadeh, M, Nurminen, L, Federer, F, Merlin, S, Bressloff, PC. 2017. Circuits and mechanisms for surround modulation in visual cortex. Annu Rev Neurosci 40:425–51.
Google Scholar | Crossref | Medline Ansari, MA, Zakeri, M. 2019. Blind localization of heating in neural tissues induced by a train of the infrared pulse laser. J Lasers Med Sci 10(4):264–7.
Google Scholar | Crossref Baumhoff, P, Kallweit, N, Kral, A. 2019. Intracochlear near infrared stimulation: feasibility of optoacoustic stimulation in vivo. Hear Res 371:40–52.
Google Scholar | Crossref | Medline Bentley, JN, Chestek, C, Stacey, WC, Patil, PG. 2013. Optogenetics in epilepsy. Neurosurg Focus 34(6):E4.
Google Scholar | Crossref | Medline Bergey, G, Morrell, M, Mizrahi, E, Goldman, A, King-Stephens, D, Nair, D, and others. 2015. Long-term treatment with responsive brain stimulation in adults with refractory partial seizures. Neurology 84(8):810–7.
Google Scholar | Crossref | Medline Bigelow, D, Kay, D, Rafter, K, Montes, M, Knox, G, Yousem, D. 1998. Facial nerve stimulation from cochlear implants. Am J Otol 19:163–9.
Google Scholar | Medline Biselli, T, Lange, SS, Sablottny, L, Steffen, J, Walther, A. 2021. Optogenetic and chemogenetic insights into the neurocircuitry of depression-like behaviour: a systematic review. Eur J Neurosci 53(1):9–38.
Google Scholar | Crossref | Medline Bortoletto, M, Rodella, C, Salvador, R, Miranda, PC, Miniussi, C. 2016. Reduced current spread by concentric electrodes in transcranial electrical stimulation (tES). Brain Stimul 9(4):525–8.
Google Scholar | Crossref | Medline Boyden, ES, Zhang, F, Bamberg, E, Nagel, G, Deisseroth, K. 2005. Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8(9):1263–8.
Google Scholar | Crossref | Medline Brown, WGA, Needham, K, Begeng, JM, Thompson, AC, Nayagam, BA, Kameneva, T, and others. 2021. Response of primary auditory neurons to stimulation with infrared light in vitro. J Neural Eng 18(4):046003.
Google Scholar | Crossref | Medline Bui, AD, Nguyen, TM, Limouse, C, Kim, HK, Szabo, GG, Felong, S, and others. 2018. Dentate gyrus mossy cells control spontaneous convulsive seizures and spatial memory. Science 359(6377):787–90.
Google Scholar | Crossref | Medline Busby, PA, Whitford, LA, Blamey, PJ, Richardson, LM, Clark, GM. 1994. Pitch perception for different modes of stimulation using the cochlear multiple-electrode prosthesis. J Acoust Soc Am 95(5):2658–69.
Google Scholar | Crossref | Medline Cai, YC, Lu, S, Li, CY. 2012. Interactions between surround suppression and interocular suppression in human vision. PLoS One 7(5):e38093.
Google Scholar | Crossref | Medline Cayce, JM, Bouchard, MB, Chernov, MM, Chen, BR, Grosberg, LE, Jansen, ED, and others. 2014a. Calcium imaging of infrared-stimulated activity in rodent brain. Cell Calcium 55(4):183–90.
Google Scholar | Crossref | Medline Cayce, JM, Friedman, R, Roe, AW, Konrad, PE, Jansen, ED, Mahadevan-Jansen, A. 2010. Relating optical signals induced by infrared neural stimulation to electrophysiology. IEEE Biomed Sci Eng Conf. 1–4. doi:10.1109/BSEC.2010.5510836
Google Scholar | Crossref Cayce, JM, Friedman, RM, Chen, G, Jansen, ED, Mahadevan-Jansen, A, Roe, AW. 2014b. Infrared neural stimulation of primary visual cortex in non-human primates. Neuroimage 84:181–90.
Google Scholar | Crossref | Medline Cayce, JM, Friedman, RM, Jansen, ED, Mahavaden-Jansen, A, Roe, AW. 2011. Pulsed infrared light alters neural activity in rat somatosensory cortex in vivo. Neuroimage 57(1):155–66.
Google Scholar | Crossref | Medline Cayce, JM, Wells, JD, Malphrus, JD, Kao, C, Thomsen, S, Tulipan, NB, and others. 2015. Infrared neural stimulation of human spinal nerve roots in vivo. Neurophotonics 2(1):015007.
Google Scholar | Crossref | Medline Chernov, M, Friedman, R, Roe, A. 2021. Fiberoptic array for multiple channel infrared neural stimulation of the brain. Neurophotonics 8(2):025005.
Google Scholar | Crossref | Medline Chernov, M, Roe, AW. 2014. Infrared neural stimulation: a new stimulation tool for central nervous system applications. Neurophotonics 1(1):011011.
Google Scholar | Crossref | Medline Chernov, MM, Chen, G, Roe, AW. 2014. Histological assessment of thermal damage in the brain following infrared neural stimulation. Brain Stimul 7(3):476–82.
Google Scholar | Crossref | Medline Cui, Y, Yang, Y, Ni, Z, Dong, Y, Cai, G, Foncelle, A, and others. 2018. Astroglial Kir4.1 in the lateral habenula drives neuronal bursts in depression. Nature 554(7692):323–7.
Google Scholar | Crossref Cushnie, A, El-Nahal, H, Bohlen, M, May, P, Basso, M, Grimaldi, P, and others. 2020. Using rAAV2-retro in rhesus macaques: promise and caveats for circuit manipulation. J Neurosci Methods 345:108859.
Google Scholar | Crossref | Medline Datta, A, Bansal, V, Diaz, J, Patel, J, Reato, D, Bikson, M. 2009. Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimul 2(4):201–207.e1.
Google Scholar | Crossref | Medline Deep-Brain Stimulation for Parkinson’s Disease Study Group . 2001. Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson’s disease. N Engl J Med 345(13):956–63.
Google Scholar Deisseroth, K . 2011. Optogenetics. Nat Methods 8(1):26–9.
Google Scholar | Crossref Diester, I, Kaufman, MT, Mogri, M, Pashaie, R, Goo, W, Yizhar, O, and others. 2011. An optogenetic toolbox designed for primates. Nat Neurosci 14(3):387–97.
Google Scholar | Crossref | Medline Duke, AR, Jenkins, MW, Lu, H, McManus, JM, Chiel, HJ, Jansen, ED. 2013. Transient and selective suppression of neural activity with infrared light. Sci Rep 3:2600.
Google Scholar | Crossref | Medline El-Shamayleh, Y, Horwitz, GD. 2019. Primate optogenetics: progress and prognosis. Proc Natl Acad Sci U S A 116(52):26195–203.
Google Scholar | Crossref El-Shamayleh, Y, Kojima, Y, Soetedjo, R, Horwitz, GD. 2017. Selective optogenetic control of purkinje cells in monkey cerebellum. Neuron 95(1):51–62.e4.
Google Scholar | Crossref | Medline Fabbrini, F, Van den Haute, C, De Vitis, M, Baekelandt, V, Vanduffel, W, Vogels, R. 2019. Probing the mechanisms of repetition suppression in inferior temporal cortex with optogenetics. Curr Biol 29(12):1988–1998.e4.
Google Scholar | Crossref Feng, HJ, Kao, C, Gallagher, MJ, Jansen, ED, Mahadevan-Jansen, A, Konrad, PE, and others. 2010. Alteration of GABAergic neurotransmission by pulsed infrared laser stimulation. J Neurosci Methods 192(1):110–4.
Google Scholar | Crossref | Medline Fenno, L, Yizhar, O, Deisseroth, K. 2011. The development and application of optogenetics. Annu Rev Neurosci 34:389–412.
Google Scholar | Crossref | Medline | ISI Follett, KA, Weaver, FM, Stern, M, Hur, K, Harris, CL, Luo, P, and others. 2010. Pallidal versus subthalamic deep-brain stimulation for Parkinson’s disease. N Engl J Med 362(22):2077–91.
Google Scholar | Crossref | Medline Ford, SM, Watanabe, M, Jenkins, MW. 2018. A review of optical pacing with infrared light. J Neural Eng 15(1):011001.
Google Scholar | Crossref | Medline Frankemolle, AM, Wu, J, Noecker, AM, Voelcker-Rehage, C, Ho, JC, Vitek, JL, and others. 2010. Reversing cognitive-motor impairments in Parkinson’s disease patients using a computational modelling approach to deep brain stimulation programming. Brain 133(pt 3):746–61.
Google Scholar | Crossref | Medline Frequin, HL, Bot, M, Dilai, J, Scholten, MN, Postma, M, Bour, LJ, and others. 2020. Relative contribution of magnetic resonance imaging, microelectrode recordings, and awake test stimulation in final lead placement during deep brain stimulation surgery of the subthalamic nucleus in Parkinson’s disease. Stereotact Funct Neurosurg 98(2):118–28.
Google Scholar | Crossref | Medline Fried, NM, Lagoda, GA, Scott, NJ, Su, L-M, Burnett, AL. 2008. Noncontact stimulation of the cavernous nerves in the rat prostate using a tunable-wavelength thulium fiber laser. J Endourol 22(3):409–14.
Google Scholar | Crossref | Medline Friedman, RM, Morone, KA, Gharbawie, OA, Roe, AW. 2020. Mapping mesoscale cortical connectivity in monkey sensorimotor cortex with optical imaging and microstimulation. J Comp Neurol 528(17):3095–107.
Google Scholar | Crossref | Medline Frijns, JH, de Snoo, SL, ten Kate, JH. 1996. Spatial selectivity in a rotationally symmetric model of the electrically stimulated cochlea. Hear Res 95(1–2):33–48.
Google Scholar | Crossref | Medline Galvan, A, Hu, X, Smith, Y, Wichmann, T. 2016. Effects of optogenetic activation of corticothalamic terminals in the motor thalamus of awake monkeys. J Neurosci 36(12):3519–30.
Google Scholar | Crossref | Medline Ganguly, M, Jenkins, MW, Jansen, ED, Chiel, HJ. 2019. Thermal block of action potentials is primarily due to voltage-dependent potassium currents: a modeling study. J Neural Eng 16(3):036020.
Google Scholar | Crossref | Medline Gauvain, G, Akolkar, H, Chaffiol, A, Arcizet, F, Khoei, MA, Desrosiers, M, and others. 2021. Optogenetic therapy: high spatiotemporal resolution and pattern discrimination compatible with vision restoration in non-human primates. Commun Biol 4(1):125.
Google Scholar | Crossref | Medline Gerits, A, Vanduffel, W. 2013. Optogenetics in primates: a shining future? Trends Genet 29(7):403–11.
Google Scholar | Crossref | Medline Goldman-Rakic, P, Schwartz, M. 1982. Interdigitation of contralateral and ipsilateral columnar projections to frontal association cortex in primates. Science 216(4547):755–7.
Google Scholar | Crossref | Medline Goyal, V, Rajguru, S, Matic, AI, Stock, SR, Richter, C-P. 2012. Acute damage threshold for infrared neural stimulation of the cochlea: functional and histological evaluation. Anat Rec 295(11):1987–99.
Google Scholar | Crossref Gradinaru, V, Mogri, M, Thompson, KR, Henderson, JM, Deisseroth, K. 2009. Optical deconstruction of Parkinsonian neural circuitry. Science 324(5925):354–9.
Google Scholar | Crossref | Medline Hirschberg, H, Madsen, SJ, Jansen, ED, Luo, Q, Mohanty, SK, Thakor, NV, and others. 2014. Infrared neural stimulation (INS) inhibits electrically evoked neural responses in the deaf white cat. SPIE Proc Opt Tech Neurosurg Neurophoton, Optogenet 8928:892818.
Google Scholar | Crossref Hodgkin, AL, Huxley, AF. 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117(4):500–44.
Google Scholar | Crossref | Medline Huber, L, Finn, ES, Handwerker, DA, Bonstrup, M, Glen, DR, Kashyap, S, and others. 2020. Sub-millimeter fMRI reveals multiple topographical digit representations that form action maps in human motor cortex. Neuroimage 208:116463.

留言 (0)

沒有登入
gif