Possible Involvement of Central Nervous System in COVID-19 and Sequence Variability of SARS-CoV-2 Revealed in Autopsy Tissue Samples: A Case Report

1. Chan, JFW, Kok, KH, Zhu, Z, et al. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect. 2020;9:221-236.
Google Scholar | Crossref | Medline2. Zhou, F, Yu, T, Du, R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395:1054-1062. doi:10.1016/S0140-6736(20)30566-3.
Google Scholar | Crossref | Medline3. Hoffmann, M, Kleine-Weber, H, Schroeder, S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181:271.e8-280.e8. doi:10.1016/j.cell.2020.02.052.
Google Scholar | Crossref4. Xu, J, Zhong, S, Liu, J, et al. Detection of severe acute respiratory syndrome coronavirus in the brain: potential role of the chemokine mig in pathogenesis. Clin Infect Dis. 2005;41:1089-1096. doi:10.1086/444461.
Google Scholar | Crossref | Medline5. Paterson, RW, Brown, RL, Benjamin, L, et al. The emerging spectrum of COVID-19 neurology: clinical, radiological and laboratory findings. Brain. 2020;143:3104-3120. doi:10.1093/brain/awaa240.
Google Scholar | Crossref | Medline6. COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU) , https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html (2020, accessed 25 June 2020).
Google Scholar7. Statens Serum Institut . Covid-19 – Danmark (Kommunalt), https://experience.arcgis.com/experience/aa41b29149f24e20a4007a0c4e13db1d (2020, accessed 22 December 2020).
Google Scholar8. Menter, T, Haslbauer, JD, Nienhold, R, et al. Post-mortem examination of COVID19 patients reveals diffuse alveolar damage with severe capillary congestion and variegated findings of lungs and other organs suggesting vascular dysfunction. Histopathology. 2020;77:198-209. doi:10.1111/his.14134.
Google Scholar | Crossref | Medline9. Wichmann, D, Sperhake, J-P, Lütgehetmann, M, et al. Autopsy Findings and Venous Thromboembolism in Patients With COVID-19. Ann Intern Med. 2020;25:2003. doi:10.7326/m20-2003.
Google Scholar | Crossref10. Song, E, Zhang, C, Israelow, B. Neuroinvasion of SARS-CoV-2 in human and mouse brain. J Chem Inf Model. 2019;53:1689-1699.
Google Scholar11. Li, YC, Bai, WZ, Hashikawa, T. The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. J Med Virol. 2020;92:552-555. doi:10.1002/jmv.25728.
Google Scholar | Crossref | Medline12. Connolly, AJ, Finkbeiner, WE, Ursell, PC, Davis, RL. Autopsy Pathology: A Manual and Atlas. 3rd ed. Amsterdam, The Netherlands: Elsevier; 2015.
Google Scholar13. Berry, GJ, Burke, MM, Andersen, C, et al. The 2013 international society for heart and lung transplantation working formulation for the standardization of nomenclature in the pathologic diagnosis of antibody-mediated rejection in heart transplantation. J Heart Lung Transplant. 2013;32:1147-1162.
Google Scholar | Crossref | Medline14. Wallace, WD, Li, N, Andersen, CB, et al. Banff study of pathologic changes in lung allograft biopsy specimens with donor-specific antibodies. J Heart Lung Transplant. 2016;35:40-48.
Google Scholar | Crossref | Medline15. DeVita, MV, Gardenswartz, M, et al. Incidence and etiology of hyponatremia in an intensive care unit. Clin Nephrol. 1990;34:163-166.
Google Scholar | Medline16. Corman, VM, Landt, O, Kaiser, M, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill. 2020;25:2000045.
Google Scholar | Crossref17. Lassaunière, R, Frische, A, Harboe, ZB, et al. Evaluation of nine commercial SARS-CoV-2 immunoassays. medRxiv, https://www.medrxiv.org/content/10.1101/2020.04.09.20056325v1
Google Scholar18. Hall, TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp. 1999;1999:95-98.
Google Scholar19. Nextstrain . Nextstrain: analysis and visualization of pathogen sequence data, https://nextstrain.org/ncov/global (2020, accessed 22 December 2020).
Google Scholar20. MAFFT Version 7 . Multiple Alignment Program for Amino Acid or Nucleotide Sequences, https://mafft.cbrc.jp/alignment/server/index.html (accessed 22 December 2020).
Google Scholar21. Hasegawa, M, Kishino, H, Yano, T. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol. 1985;22:160-174.
Google Scholar | Crossref | Medline22. Felsenstein, J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985;39:783-791.
Google Scholar | Crossref | Medline23. Kumar, S, Stecher, G, Li, M, Knyaz, C, Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35:1547-1549. doi:10.1093/molbev/msy096.
Google Scholar | Crossref | Medline24. Mao, L, Jin, H, Wang, M, et al. Neurologic Manifestations of Hospitalized Patients With Coronavirus Disease 2019 in Wuhan, China. JAMA Neurol. 2020;77:683-690. doi:10.1001/jamaneurol.2020.1127.
Google Scholar | Crossref | Medline25. Moriguchi, T, Harii, N, Goto, J, et al. A first case of meningitis/encephalitis associated with SARS-Coronavirus-2. Int J Infect Dis. 2020;94:55-58. doi:10.1016/j.ijid.2020.03.062.
Google Scholar | Crossref | Medline26. Paniz-Mondolfi, A, Bryce, C, Grimes, Z, et al. Central nervous system involvement by severe acute respiratory syndrome coronavirus -2 (SARS-CoV-2). J Med Virol. 2020;92:699-702. doi:10.1002/jmv.25915.
Google Scholar | Crossref | Medline27. Polak, SB, Van Gool, IC, Cohen, D, Von Der Thüsen, JH, Van Paassen, J. A systematic review of pathological findings in COVID-19: a pathophysiological timeline and possible mechanisms of disease progression. Mod Pathol. 2020;33:2128-2138. doi:10.1038/s41379-020-0603-3.
Google Scholar | Crossref | Medline28. Barton, LM, Duval, EJ, Stroberg, E, Ghosh, S, Mukhopadhyay, S. COVID-19 autopsies, Oklahoma, USA. Am J Clin Pathol. 2020;153:725-733. doi:10.1093/AJCP/AQAA062.
Google Scholar | Crossref | Medline29. Nathan, BR. Cerebral correlates of hyponatremia. Neurocrit Care. 2007;6:72-78. doi:10.1385/Neurocrit.
Google Scholar | Crossref | Medline30. Byramji, A, Glenda, AE, Ae, C, Gilbert, JD, Byard, RW. Hyponatremia at autopsy: an analysis of etiologic mechanisms and their possible significance. Forensic Sci Med Pathol. 2008;4:149-152. doi:10.1007/s12024-008-9047-7.
Google Scholar | Crossref | Medline31. Kamal, YM, Abdelmajid, Y, Al Madani, AAR. Cerebrospinal fluid confirmed COVID-19-associated encephalitis treated successfully. BMJ Case Rep. 2020;13:1-5. doi:10.1136/bcr-2020-237378.
Google Scholar | Crossref | Medline32. Varatharaj, A, Thomas, N, Ellul, MA, et al. Neurological and neuropsychiatric complications of COVID-19 in 153 patients: a UK-wide surveillance study. Lancet Psychiatry. 2020;7:875-882.
Google Scholar | Crossref | Medline33. Domingues, RB, Mendes-Correa, MC, de Moura Leite, FBV, et al. First case of SARS-COV-2 sequencing in cerebrospinal fluid of a patient with suspected demyelinating disease. J Neurol. 2020;267:3154-3156.
Google Scholar | Crossref | Medline34. Li, Z, Liu, T, Yang, N, et al. Neurological manifestations of patients with COVID-19: potential routes of SARS-CoV-2 neuroinvasion from the periphery to the brain. Front Med. 2020;14:533-541.
Google Scholar | Crossref | Medline35. Zhou, P, Yang, X, Lou Wang, XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579:270-273. doi:10.1038/s41586-020-2012-7.
Google Scholar | Crossref | Medline36. Reiber, H. Proteins in cerebrospinal fluid and blood: barriers, CSF flow rate and source-related dynamics. Restor Neurol Neurosci. 2003;21:79-96.
Google Scholar | Medline

留言 (0)

沒有登入
gif