Application and Evaluation of [99mTc]-Labeled Peptide Nucleic Acid Targeting MicroRNA-155 in Breast Cancer Imaging

1. Reddy, KB . MicroRNA (miRNA) in cancer. Cancer Cell Int. 2015;15:38.
Google Scholar | Crossref | Medline2. Trzybulska, D, Vergadi, E, Tsatsanis, C. MiRNA and other non-coding RNAs as promising diagnostic markers. EJIFCC. 2018;29(3):221–226.
Google Scholar | Medline3. Jurkovicova, D, Magyerkova, M, Kulcsar, L, et al. MiR-155 as a diagnostic and prognostic marker in hematological and solid malignancies. Neoplasma. 2014;61(3):241–251.
Google Scholar | Crossref | Medline4. Sochor, M, Basova, P, Pesta, M, et al. Oncogenic microRNAs: miR-155, miR-19a, miR-181b, and miR-24 enable monitoring of early breast cancer in serum. BMC Cancer. 2014;14:448.
Google Scholar | Crossref | Medline5. Donnem, T, Eklo, K, Berg, T, et al. Prognostic impact of MiR-155 in non-small cell lung cancer evaluated by in situ hybridization. J Transl Med. 2011;9(1):6.
Google Scholar | Crossref | Medline6. Slezak-Prochazka, I, Kluiver, J, de Jong, D, et al. Inhibition of the miR-155 target NIAM phenocopies the growth promoting effect of miR-155 in B-cell lymphoma. Oncotarget. 2016;7(3):2391–2400.
Google Scholar | Crossref | Medline7. Tili, E, Croce, CM, Michaille, JJ. MiR-155: on the crosstalk between inflammation and cancer. Int Rev Immunol. 2009;28(5):264–284.
Google Scholar | Crossref | Medline8. Kim, YK, Yu, J, Han, TS, et al. Functional links between clustered microRNAs: suppression of cell-cycle inhibitors by microRNA clusters in gastric cancer. Nucleic Acids Res. 2009;37(5):1672–1681.
Google Scholar | Crossref | Medline9. Van Roosbroeck, K, Fanini, F, Setoyama, T, et al. Combining anti-mir-155 with chemotherapy for the treatment of lung cancers. Clin Cancer Res. 2017;23(11):2891–2904.
Google Scholar | Crossref | Medline10. Karkare, S, Bhatnagar, D. Promising nucleic acid analogs and mimics: characteristic features and applications of PNA, LNA, and morpholino. Appl Microbiol Biotechnol. 2006;71(5):575–586.
Google Scholar | Crossref | Medline11. Egholm, M, Buchardt, O, Christensen, L, et al. PNA hybridizes to complementary oligonucleotides obeying the Watson-Crick hydrogen-bonding rules. Nature. 1993;365(6446):566–568.
Google Scholar | Crossref | Medline12. Good, L, Nielsen, PE. Progress in developing PNA as a gene-targeted drug. Antisense Nucleic Acid Drug Dev. 1997;7(4):431–437.
Google Scholar | Crossref | Medline13. Aboul-Fadl, T . Antisense oligonucleotides: the state of the art. Curr Med Chem. 2005;12(19):2193–2214.
Google Scholar | Crossref | Medline14. Shah, K, Jacobs, A, Breakefield, XO, Weissleder, R. Molecular imaging of gene therapy for cancer. Gene Ther. 2004;11(15):1175–1187.
Google Scholar | Crossref | Medline15. Mukherjee, A, Wickstrom, E, Thakur, ML. Imaging oncogene expression. Eur J Radiol. 2009;70(2):265–273.
Google Scholar | Crossref | Medline16. Lewis, MR, Jia, F. Antisense imaging: and miles to go before we sleep? J Cell Biochem. 2003;90(3):464–472.
Google Scholar | Crossref | Medline17. Tian, X, Aruva, MR, Qin, W, et al. External imaging of CCND1 cancer gene activity in experimental human breast cancer xenografts with [99mTc]peptide-peptide nucleic acid-peptide chimeras. J Nucl Med. 2004;45(12):2070–2082.
Google Scholar | Medline18. Paudyal, B, Zhang, K, Chen, CP, et al. Determining efficacy of breast cancer therapy by PET imaging of HER2 mRNA. Nucl Med Biol. 2013;40(8):994–999.
Google Scholar | Crossref | Medline19. Keshavarzi, M, Sorayayi, S, Jafar Rezaei, M, et al. MicroRNAs-based imaging techniques in cancer diagnosis and therapy. J Cell Biochem. 2017;118(12):4121–4128.
Google Scholar | Crossref | Medline20. Robertson, ED, Wasylyk, C, Ye, T, Jung, AC, Wasylyk, B. The oncogenic MicroRNA Hsa-miR-155-5p targets the transcription factor ELK3 and links it to the hypoxia response. PLoS One. 2014;9(11):e113050.
Google Scholar | Crossref | Medline21. Kang, L, Huo, Y, Ji, Q, et al. Noninvasive visualization of microRNA-155 in multiple kinds of tumors using a radiolabeled anti-miRNA oligonucleotide. Nucl Med Biol. 2016;43(2):171–178.
Google Scholar | Crossref | Medline22. Zhao, X, Wang, N, Ren, X, et al. Preparation and evaluation of [99mTc]-epidermal growth factor receptor (EGFR)-peptide nucleic acid for visualization of EGFR messenger RNA expression in malignant tumors. J Nucl Med. 2014;55(6):1008–1016.
Google Scholar | Crossref | Medline23. Mellis, D, Caporali, A. MicroRNA-based therapeutics in cardiovascular disease: screening and delivery to the target. Biochem Soc Trans. 2018;46(1):11–21.
Google Scholar | Crossref | Medline24. Shah, P, Bristow, MR, Port, JD. MicroRNAs in heart failure, cardiac transplantation, and myocardial recovery: biomarkers with therapeutic potential. Curr Heart Fail Rep. 2017;14(6):454–464.
Google Scholar | Crossref | Medline25. Thomas, KT, Gross, C, Bassell, GJ. MicroRNAs sculpt neuronal communication in a tight balance that is lost in neurological disease. Front Mol Neurosci. 2018;11:455.
Google Scholar | Crossref | Medline26. Snowhite, IV, Allende, G, Sosenko, J, Pastori, RL, Cayetano, SM, Pugliese, A. Association of serum microRNAs with islet autoimmunity, disease progression and metabolic impairment in relatives at risk of type 1 diabetes. Diabetologia. 2017;60(8):1409–1422.
Google Scholar | Crossref | Medline27. Subramaniam, S, Jeet, V, Clements, JA, Gunter, JH, Batra, J. Emergence of microRNAs as key players in cancer cell metabolism. Clin Chem. 2019;65(9):1090–1101.
Google Scholar | Crossref | Medline28. Mattiske, S, Suetani, RJ, Neilsen, PM, Callen, DF. The oncogenic role of miR-155 in breast cancer. Cancer Epidemiol Biomarkers Prev. 2012;21(8):1236–1243.
Google Scholar | Crossref | Medline29. Tian, X, Aruva, MR, Qin, W, et al. Noninvasive molecular imaging of MYC mRNA expression in human breast cancer xenografts with a [99mTc]peptide-peptide nucleic acid-peptide chimera. Bioconjug Chem. 2005;16(1):70–79.
Google Scholar | Crossref | Medline30. Mardirossian, G, Lei, K, Rusckowski, M, et al. In vivo hybridization of technetium-99m-labeled peptide nucleic acid (PNA). J Nucl Med. 1997;38(6):907–913.
Google Scholar | Medline31. Sun, X, Fang, H, Li, X, Rossin, R, Welch, MJ, Taylor, JS. MicroPET imaging of MCF-7 tumors in mice via unr mRNA-targeted peptide nucleic acids. Bioconjug Chem. 2005;16(2):294–305.
Google Scholar | Crossref | Medline32. Quijano, E, Bahal, R, Ricciardi, A, Saltzman, WM, Glazer, PM. Therapeutic peptide nucleic acids: principles, limitations, and opportunities. Yale J Biol Med. 2017;90(4):583–598.
Google Scholar | Medline33. Dias, N, Stein, CA. Antisense oligonucleotides: basic concepts and mechanisms. Mol Cancer Ther. 2002;1(5):347–355.
Google Scholar | Medline | ISI34. Oh, SY, Ju, Y, Kim, S, Park, H. PNA-based antisense oligonucleotides for microRNAs inhibition in the absence of a transfection reagent. Oligonucleotides. 2010;20(5):225–230.
Google Scholar | Crossref | Medline35. Petersen, L, de Koning, MC, van Kuik-Romeijn, P, et al. Synthesis and in vitro evaluation of PNA-peptide-DETA conjugates as potential cell penetrating artificial ribonucleases. Bioconjug Chem. 2004;15(3):576–582.
Google Scholar | Crossref | Medline36. Zhang, Z, Liu, Y, Jarreau, C, Welch, MJ, Taylor, JSA. Nucleic acid-directed self-assembly of multifunctional gold nanoparticle imaging agents. Biomater Sci. 2013;1(10):1055–1064.
Google Scholar | Crossref | Medline37. Shen, Y, Shrestha, R, Ibricevic, A, et al. Antisense peptide nucleic acid-functionalized cationic nanocomplex for in vivo mRNA detection. Interface Focus. 2013;3(3):20120059.
Google Scholar | Crossref | Medline38. Wang, Z, Zhang, K, Shen, Y, et al. Imaging mRNA expression levels in living cells with PNA·DNA binary FRET probes delivered by cationic shell-crosslinked nanoparticles. Org Biomol Chem. 2013;11(19):3159–3167.
Google Scholar | Crossref | Medline39. Vives, E . Cellular uptake of the Tat peptide: an endocytosis mechanism following ionic interactions. J Mol Recognit. 2003;16(5):265–271.
Google Scholar | Crossref | Medline40. Slivac, I, Guay, D, Mangion, M, Champeil, J, Gaillet, B. Non-viral nucleic acid delivery methods. Expert Opin Biol Ther. 2017;17(1):105–118.
Google Scholar | Crossref | Medline

留言 (0)

沒有登入
gif