Research Progress of Radiolabeled Asn-Gly-Arg (NGR) Peptides for Imaging and Therapy

1. Wickstrom, M, Larsson, R, Nygren, P, Gullbo, J. Aminopeptidase N (CD13) as a target for cancer chemotherapy. Cancer Sci. 2011;102(3):501–508.
Google Scholar | Crossref | Medline2. Renata, P, Erkki, K, Renate, K, et al. Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis 1. Cancer Res. 2000;60(3):722–727.
Google Scholar | Medline3. Angelo, C, Curnis, F. Tumor vasculature targeting through NGR peptide-based drug delivery systems. Curr Pharm Biotechnol. 2011;12(8):1128–1134.
Google Scholar | Crossref | Medline4. Flavio, C, Anna, G, Angelina, S, Cattaneo, A, Magni, F, Corti, A. Targeted delivery of IFN; to tumor vessels uncouples antitumor from counterregulatory mechanisms. Cancer Res. 2005;65(7):2906–2913.
Google Scholar | Crossref | Medline5. Corti, A, Curnis, F, Arap, W, Pasqualini, R. The neovasculature homing motif NGR: more than meets the eye. Blood. 2008;112(7):2628–2635.
Google Scholar | Crossref | Medline6. Wadih, A, Renata, P, Ruoslahti, E. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science. 2016;279(5349):377–380.
Google Scholar7. Colombo, G, Curnis, F, De Mori, GMS, et al. Structure-activity relationships of linear and cyclic peptides containing the NGR tumor-homing motif. J Biol Chem. 2002;277(49):47891–47897.
Google Scholar | Crossref | Medline8. Ayele, HN, Jenna, LM, Goutham, R, Drake, SK, Wood, BJ, Dreher, MR. Synthesis and in vitro evaluation of cyclic NGR peptide targeted thermally sensitive liposome. J. Control Release 2010;143(2):265–273.
Google Scholar | Crossref | Medline9. Metaferia, BB, Rittler, M, Gheeya, JS, et al. Synthesis of novel cyclic NGR/RGD peptide analogs via on resin click chemistry. Bioorg Med Chem Lett. 2010;20(24):7337–7340.
Google Scholar | Crossref | Medline10. Xie, X, Yang, Y, Yang, Y, Zhang, H, Li, Y, Mei, X. A photo-responsive peptide- and asparagine–glycine–arginine (NGR) peptide-mediated liposomal delivery system. Drug Deliv. 2016;23(7):2445–2456.
Google Scholar | Crossref | Medline11. Curnis, F, Cattaneo, A, Longhi, R, et al. Critical role of flanking residues in NGR-to-isoDGR transition and CD13/integrin receptor switching. J Biol Chem. 2010;285(12):9114–9123.
Google Scholar | Crossref | Medline12. Kirikoshi, R, Manabe, N, Takahashi, O. Succinimide formation from an NGR-containing cyclic peptide: computational evidence for catalytic roles of phosphate buffer and the arginine side chain. Int J Mol Sci. 2017;18(2):429. doi:10.3390/ijms18020429
Google Scholar | Crossref13. Yang, Y, Yang, Y, Xie, X, et al. PEGylated liposomes with NGR ligand and heat-activable cell-penetrating peptide–doxorubicin conjugate for tumor-specific therapy. Biomaterials. 2014;35(14):4368–4381.
Google Scholar | Crossref | Medline14. Seidi, K, Jahanban, ER, Monhemi, H, et al. NGR (Asn-Gly-Arg)-targeted delivery of coagulase to tumor vasculature arrests cancer cell growth. Oncogene. 2018;37(29):3967–3980.
Google Scholar | Crossref | Medline15. Persigehl, T, Ring, J, Bremer, C, et al. Non-invasive monitoring of tumor-vessel infarction by retargeted truncated tissue factor tTF–NGR using multi-modal imaging. Angiogenesis. 2014;17(1):235–246.
Google Scholar | Crossref | Medline16. Rongsheng, EW, Youhong, N, Haifan, W, Amin, MN, Cai, J. Development of NGR peptide-based agents for tumor imaging. Am J Nucl Med Mol Imaging. 2011;1(1):36–46.
Google Scholar | Medline17. Rongsheng, EW, Youhong, N, Haifan, Wu, Hu, Y, Cai, J. Development of NGR-based anti-cancer agents for targeted therapeutics and imaging. Anticancer Agents Med Chem. 2012;12(1):76–86.
Google Scholar | Crossref | Medline18. Di Matteo, P, Mangia, P, Tiziano, E, et al. Anti-metastatic activity of the tumor vascular targeting agent NGR-TNF. Clin Exp Metastasis. 2015;32(3):289–300.
Google Scholar | Crossref | Medline19. Corti, A, Curnis, F, Rossoni, G, Marcucci, F, Gregorc, V. Peptide-mediated targeting of cytokines to tumor vasculature: the NGR-hTNF example. BioDrugs. 2013;27(6):591–603.
Google Scholar | Crossref | Medline20. van Laarhoven, HWM, Fiedler, W, Desar, IME, et al. Phase I clinical and cagnetic resonance imaging study of the vascular agent NGR-hTNF in patients with advanced cancers (European Organization for Research and Treatment of Cancer Study 16041). Clin Cancer Res. 2010;16(4):1315–1323.
Google Scholar | Crossref | Medline21. Gregorc, V, Citterio, G, Vitali, G, et al. Defining the optimal biological dose of NGR-hTNF, a selective vascular targeting agent, in advanced solid tumours. Eur J Cancer. 2010;46(1):198–206.
Google Scholar | Crossref | Medline22. Gregorc, V, Gaafar, RM, Favaretto, A, et al. NGR-hTNF in combination with best investigator choice in previously treated malignant pleural mesothelioma (NGR015): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet Oncol. 2018;19(6):799–811.
Google Scholar | Crossref | Medline23. Gregorc, V, Cavina, R, Novello, S, et al. NGR-hTNF and doxorubicin as second-line treatment of patients with small cell lung cancer. Oncologist. 2018;23(10):1133–e1112.
Google Scholar | Crossref | Medline24. Parmiani, G, Pilla, L, Corti, A, et al. A pilot phase I study combining peptide-based vaccination and NGR-hTNF vessel targeting therapy in metastatic melanoma. OncoImmunology. 2014;3(11):e963406.
Google Scholar | Crossref | Medline25. Lorusso, D, Scambia, G, Amadio, G, et al. Phase II study of NGR-hTNF in combination with doxorubicin in relapsed ovarian cancer patients. Br J Cancer. 2012;107(1):37–42.
Google Scholar | Crossref | Medline26. Mammoliti, S, Andretta, V, Bennicelli, E, et al. Two doses of NGR-hTNF in combination with capecitabine plus oxaliplatin in colorectal cancer patients failing standard therapies. Ann Oncol. 2010;22:973–978.
Google Scholar | Crossref | Medline27. Santoro, A, Pressiani, T, Citterio, G, et al. Activity and safety of NGR-hTNF, a selective vascular-targeting agent, in previously treated patients with advanced hepatocellular carcinoma. Br J Cancer. 2010;103(6):837–844.
Google Scholar | Crossref | Medline28. Zhang, J, Lu, X, Wan, N, et al. 68Ga-DOTA-NGR as a novel molecular probe for APN-positive tumor imaging using MicroPET. Nucl Med Biol. 2014;41(3):268–275.
Google Scholar | Crossref | Medline29. He, YX, Guo, QY. Clinical applications and advances of positron emission tomography with fluorine-18-fluorodeoxyglucose 18F-FDG in the diagnosis of liver neoplasms. Postgrad Med J. 2008;84(991):246–251.
Google Scholar | Crossref | Medline30. Gao, Y, Wang, Z, Ma, X, et al. The uptake exploration of 68Ga-labeled NGR in well-differentiated hepatocellular carcinoma xenografts: Indication for the new clinical translational of a tracer based on NGR. Oncol Rep. 2017;38(5):2859–2866.
Google Scholar | Crossref | Medline31. Ramogida, CF, Orvig, C. Tumour targeting with radiometals for diagnosis and therapy. Chem Commun. 2013;49(42):4720–4739.
Google Scholar | Crossref | Medline32. Shao, Y, Liang, W, Kang, F, et al. 68Ga-labeled cyclic NGR peptide for microPET imaging of CD13 receptor expression. Molecules. 2014;19(8):11600–11612.
Google Scholar | Crossref | Medline33. Werle, M, Bernkop-Schnürch, A. Strategies to improve plasma half life time of peptide and protein drugs. Amino Acids. 2006;30(4):351–367.
Google Scholar | Crossref | Medline34. Zhao, M, Yang, W, Zhang, M, et al. Evaluation of 68Ga-labeled iNGR peptide with tumor-penetrating motif for microPET imaging of CD13-positive tumor xenografts. Tumour Biol. 2016;37(9):12123–12131.
Google Scholar | Crossref | Medline35. Luca, A, Lise, R, Kazuki, NS, et al. De novo design of a tumor-penetrating peptide. Cancer Res. 2013;73(2):804–812.
Google Scholar | Crossref | Medline36. Ma, W, Wang, Z, Yang, W, Ma, X, Kang, F, Wang, J. Biodistribution and SPECT imaging study of 99mTc labeling NGR peptide in nude mice bearing human HepG2 hepatoma. Biomed Res Int. 2014;2014:618096.
Google Scholar | Medline37. Faintuch, BL, Oliveira, EA, Targino, RC, Moro, AM. Radiolabeled NGR phage display peptide sequence for tumor targeting. Appl Radiat Isot. 2014;86:41–45.
Google Scholar | Crossref | Medline38. Kim, DW, Kim, WH, Kim, MH, Kim, CG. Novel Tc-99m labeled ELR-containing 6-mer peptides for tumor imaging in epidermoid carcinoma xenografts model: a pilot study. Ann Nucl Med. 2013;27(10):892–897.
Google Scholar | Crossref | Medline39. Kim, DW, Kim, WH, Kim, MH, Kim, CG. Synthesis and evaluation of novel 99mTc labeled NGR-containing hexapeptides as tumor imaging agents. J Labelled Comp Radiopharm. 2015;58(2):30–35.
Google Scholar | Crossref | Medline40. Ma, W, Kang, F, Wang Z, et al. 99mTc-labeled monomeric and dimeric NGR peptides for SPECT imaging of CD13 receptor in tumor-bearing mice. Amino Acids. 2013;44(5):1337–1345.
Google Scholar | Crossref | Medline41. Vats, K, Satpati, D, Sharma R, et al. 99mTc-labeled NGR-chlorambucil conjugate, 99 m Tc-HYNIC-CLB-c(NGR) for targeted chemotherapy and molecular imaging. J Labelled Comp Radiopharm. 2017;60(9):431–438.
Google Scholar | Crossref | Medline42. Millard, M, Gallagher, JD, Olenyuk, BZ, Neamati, N. A selective mitochondrial-targeted chlorambucil with remarkable cytotoxicity in breast and pancreatic cancers. J Med Chem. 2013;56(22):9170–9179.
Google Scholar | Crossref | Medline43. Gaertner, FC, Kessler, H, Wester, HJ, Schwaiger, M, Beer, AJ. Radiolabelled RGD peptides for imaging and therapy. Eur J Nucl Med Mol Imaging. 2012;39(1):126–138.
Google Scholar | Crossref44. Chen, K, Ma, W, Li, G, et al. Synthesis and evaluation of 64Cu-labeled monomeric and dimeric NGR peptides for microPET imaging of CD13 receptor expression. Mol Pharm. 2013;10(1):417–427.
Google Scholar | Crossref | Medline45. Li, G, Wang, X, Zong, S, Wang, J, Conti, PS, Chen, K. MicroPET imaging of CD13 expression using a 64Cu-labeled dimeric NGR peptide based on sarcophagine cage. Mol Pharm. 2014;11(11):3938–3946.
Google Scholar | Crossref | Medline46. Shao, Y, Liang, W, Kang, F, et al. A direct comparison of tumor angiogenesis with 68Ga-labeled NGR and RGD peptides in HT-1080 tumor xenografts using microPET imaging. Amino Acids. 2014;46(10):2355–2364.
Google Scholar | Crossref | Medline47. Eo, JS, Jeong, JM. Angiogenesis imaging using 68Ga-RGD PET/CT: therapeutic implications. Semin Nucl Med. 2016;46(5):419–427.
Google Scholar | Crossref | Medline48. Mate, G, Kertesz, I, Enyedi, KN, et al. In vivo imaging of aminopeptidase N (CD13) receptors in experimental renal tumors using the novel radiotracer 68Ga-NOTA-c(NGR). Eur J Pharm Sci. 2015;69:61–71.
Google Scholar | Crossref | Medline49. Oliveira, EA, Faintuch, BL, Nunez, EG, et al. Radiotracers for different angiogenesis receptors in a melanoma model. Melanoma Res. 2012;22(1):45–53.
Google Scholar | Crossref | Medline50. Satpati, D, Sharma, R, Kumar, C, et al. 68Ga-Chelation and comparative evaluation of N, N’-bis-[2-hydroxy-5-(carboxyethyl)benzyl]ethylenediamine-N, N’-diacetic acid (HBED-CC) conjugated NGR and RGD peptides as tumor targeted molecular imaging probes. MedChemComm. 2017;8(3):673–679.

留言 (0)

沒有登入
gif