1.
Hedrich, WD, Fandy, TE, Ashour, HM, Wang, H, Hassan, HE. Antibody-drug conjugates: pharmacokinetic/pharmacodynamic modeling, preclinical characterization, clinical studies, and lessons learned. Clin Pharmacokinet. 2018;57(6):687–703. doi:10.1007/s40262-017-0619-0
Google Scholar |
Crossref |
Medline2.
Thomas, A, Teicher, BA, Hassan, R. Antibody-drug conjugates for cancer therapy. Lancet Oncol. 2016;17(6):e254–e262. doi:10.1016/S1470-2045(16)30030-4
Google Scholar |
Crossref |
Medline3.
Blum, RH, Wittenberg, BK, Canellos, GP, et al. A therapeutic trial of maytansine. Cancer Clin Trials. 1978;1(2):113–117.
Google Scholar |
Medline4.
Lambert, JM, Morris, CQ. Antibody-drug conjugates (ADCs) for personalized treatment of solid tumors: a review. Adv Ther. 2017;34(5):1015–1035. doi:10.1007/s12325-017-0519-6
Google Scholar |
Crossref |
Medline5.
Wu, AM, Senter, PD. Arming antibodies: prospects and challenges for immunoconjugates. Nat Biotechnol. 2005;23(9):1137–1146. doi:nbt1141 [pii] 10.1038/nbt1141
Google Scholar |
Crossref |
Medline |
ISI6.
Nejadmoghaddam, MR, Minai-Tehrani, A, Ghahremanzadeh, R, Mahmoudi, M, Dinarvand, R, Zarnani, AH. Antibody-drug conjugates: possibilities and challenges. Avicenna J Med Biotechnol. 2019;11(1):3–23.
Google Scholar |
Medline7.
Senter, PD, Sievers, EL. The discovery and development of brentuximab vedotin for use in relapsed Hodgkin lymphoma and systemic anaplastic large cell lymphoma. Nat Biotechnol. 2012;30(7):631–637. doi:10.1038/nbt.2289
Google Scholar |
Crossref |
Medline8.
Lambert, JM, Chari, RV. Ado-trastuzumab emtansine (T-DM1): an antibody-drug conjugate (ADC) for HER2-positive breast cancer. J Med Chem. 2014;57(16):6949–6964. doi:10.1021/jm500766w
Google Scholar |
Crossref |
Medline9.
Flygare, JA, Pillow, TH, Aristoff, P. Antibody-drug conjugates for the treatment of cancer. Chem Biol Drug Des. 2013;81(1):113–121. doi:10.1111/cbdd.12085
Google Scholar |
Crossref |
Medline10.
Sievers, EL, Senter, PD. Antibody-drug conjugates in cancer therapy. Annu Rev Med. 2013;64:15–29. doi:10.1146/annurev-med-050311-201823
Google Scholar |
Crossref |
Medline |
ISI11.
Beck, A, Goetsch, L, Dumontet, C, Corvaïa, N. Strategies and challenges for the next generation of antibody-drug conjugates. Nat Rev Drug Discov. 2017;16(5):315–337. doi:10.1038/nrd.2016.268
Google Scholar |
Crossref |
Medline12.
Mullard, A . Maturing antibody-drug conjugate pipeline hits 30. Nat Rev Drug Discov. 2013;12(5):329–332. doi:10.1038/nrd4009
Google Scholar |
Crossref |
Medline13.
Smith, NL, Halliday, BE, Finley, JL, Wennerberg, AE. The spectrum of immunohistochemical reactivity of monoclonal antibody DS6 in nongynecologic neoplasms. Appl Immunohistochem Mol Morphol. 2002;10(2):152–158.
Google Scholar |
Crossref |
Medline14.
Lopus, M, Oroudjev, E, Wilson, L, et al. Maytansine and cellular metabolites of antibody-maytansinoid conjugates strongly suppress microtubule dynamics by binding to microtubules. Mol Cancer Ther. 2010;9(10):2689–2699. doi:10.1158/1535-7163.MCT-10-06449/10/2689
Google Scholar |
Crossref |
Medline15.
Lu, CY, Chen, GJ, Tai, PH, et al. Tetravalent anti-CD20/CD3 bispecific antibody for the treatment of B cell lymphoma. Biochem Biophys Res Commun. 2016;473(4):808–813. .2016.03.124
Google Scholar |
Crossref |
Medline16.
Olafsen, T, Sirk, SJ, Olma, S, Shen, CK, Wu, AM. ImmunoPET using engineered antibody fragments: fluorine-18 labeled diabodies for same-day imaging. Tumour Biol. 2012;33(3):669–677. doi:10.1007/s13277-012-0365-8
Google Scholar |
Crossref |
Medline17.
Ilovich, O, Natarajan, A, Hori, S, et al. Development and validation of an immunoPET tracer as a companion diagnostic agent for antibody-drug conjugate therapy to target the CA6 epitope. Radiology. 2015;276(1):191–198. doi:10.1148/radiol.15140058
Google Scholar |
Crossref |
Medline18.
Gomez-Roca, CA, Boni, V, Moreno, V, et al. A phase I study of SAR566658, an anti CA6-antibody drug conjugate (ADC), in patients (Pts) with CA6-positive advanced solid tumors (STs)(NCT01156870). J Clin Oncol. 2016;34(15):2511–2511. doi:10.1200/JCO.2016.34.15_suppl.2511
Google Scholar |
Crossref19.
Smith, NL, Halliday, BE, Finley, JL, Wennerberg, AE. Immunohistochemical distribution of tumor-associated antigen CA6 in gynecological neoplasms as detected by monoclonal antibody DS6. Int J Gynecol Pathol. 2001;20(3):260–266.
Google Scholar |
Crossref |
Medline20.
Kearse, KP, Smith, NL, Semer, DA, et al. Monoclonal antibody DS6 detects a tumor-associated sialoglycotope expressed on human serous ovarian carcinomas. Int J Cancer. 2000;88(6):866–872.
Google Scholar |
Crossref |
Medline21.
Natarajan, A, Gowrishankar, G, Nielsen, CH, et al. Positron emission tomography of 64Cu-DOTA-rituximab in a transgenic mouse model expressing human CD20 for clinical translation to image NHL. Mol Imaging Biol. 2012;14(5):608–616. doi:10.1007/s11307-011-0537-8
Google Scholar |
Crossref |
Medline22.
Natarajan, A, Arksey, N, Iagaru, A, et al. Validation of 64Cu-DOTA-rituximab injection preparation under good manufacturing practices: a PET tracer for imaging of B-cell non-Hodgkin lymphoma. Mol Imaging. 2015;14. doi:10.2310/7290.2014.00055
Google Scholar |
Medline23.
Grosset, AA, Loayza-Vega, K, Adam-Granger, E, et al. Hematoxylin and eosin counterstaining protocol for immunohistochemistry interpretation and diagnosis. Appl Immunohistochem Mol Morphol. 2019;27(7):558–563. doi:10.1097/PAI.0000000000000626
Google Scholar |
Crossref |
Medline24.
Fedchenko, N, Reifenrath, J. Different approaches for interpretation and reporting of immunohistochemistry analysis results in the bone tissue—a review. Diagn Pathol. 2014;9:221. doi:10.1186/s13000-014-0221-9
Google Scholar |
Crossref |
Medline |
ISI25.
Correia, IR . Stability of IgG isotypes in serum. MAbs. 2010;2(3):221–232. doi:10.4161/mabs.2.3.11788
Google Scholar |
Crossref |
Medline26.
Srinivas, SM, Dhurairaj, T, Basu, S, Bural, G, Surti, S, Alavi, A. A recovery coefficient method for partial volume correction of PET images. Ann Nucl Med. 2009;23(4):341–348. doi:10.1007/s12149-009-0241-9
Google Scholar |
Crossref |
Medline
留言 (0)