From the Outside in: An Overview of Positron Imaging of Plant and Soil Processes

1. Ruben, S, Hassid, WZ, Kamen, MD. Radioactive carbon in the study of photosynthesis. J Am Chem Soc. 1939;61:661–663.
Google Scholar | Crossref2. McKay, RML, Palmer, GR, Ma, XP, Layzell, DB, McKee, BTA. The use of positron emission tomography for studies of long-distance transport in plants: uptake and transport of 18F. Plant Cell Environ. 1988;11(9):851–861.
Google Scholar | Crossref3. Matsuhashi, S. Radiation-based plant diagnostics: positron imaging-based studies of plants. In: Kudo, H , ed. Radiation Applications. 1st ed. Springer; 2018:255–292.
Google Scholar | Crossref4. L’Annunziata, MF . Gamma- and X-radiation photons. In: L’Annunziata, MF , ed. Radioactivity: Introduction and History. 1st ed. Elsevier; 2007:187–215.
Google Scholar | Crossref5. Phelps, ME, Cherry, SR, Dahlbom, M. PET: Physics, Instrumentation and Scanners. Springer; 2006.
Google Scholar | Crossref6. Rich, DA . A brief history of positron emission tomography. J Nucl Med Technol. 1997;25(1):4–11.
Google Scholar | Medline7. Wagner, HN . A brief history of positron emission tomography (PET). Semin Nucl Med. 1998;28(3):213–220.
Google Scholar | Crossref | Medline8. L’Annunziata, MF . Handbook of Radioactivity Analysis. 3rd ed. Elsevier; 2012.
Google Scholar | Crossref9. Conti, M, Eriksson, L. Physics of pure and non-pure positron emitters for PET: a review and a discussion. EJNMMI Physics. 2016;3(1):8.
Google Scholar | Crossref | Medline10. Bailey, D, Karp, J, Surti, S. Physics and instrumentation in PET. In: Bailey, D, Townsend, D, Valk, P, Maisey, M, eds. Positron Emission Tomography. 1st ed. Springer; 2005:13–39.
Google Scholar | Crossref11. Jødal, L, Le Loirec, C, Champion, C. Positron range in PET imaging: an alternative approach for assessing and correcting the blurring. Phys Med Biol. 2012;57(12):3931–3943.
Google Scholar | Crossref | Medline12. Levin, CS, Hoffmann, EJ. Calculation of positron range and its effect on the fundamental limit of positron emission tomography system spatial resolution. Phys Med Biol 1999;44(3):781–799.
Google Scholar | Crossref | Medline13. Levin, CS . Primer on molecular imaging technology. Eur J Nucl Med Mol Imaging. 2005;32(Suppl 2):S325–S345.
Google Scholar | Crossref | Medline14. Zakhnini, A, Kulenkampff, J, Sauerzapf, S, Pietrzyk, U, Lippmann-Pipke, J. Monte Carlo simulations of GeoPET experiments: 3D images of tracer distributions (18F, 124I, and 58Co) in Opalinus clay, anhydrite and quartz. Comput Geosci-UK. 2013;57:183–196.
Google Scholar | Crossref15. Zahasky, C, Kurotori, T, Pini, R, Benson, SM. Positron emission tomography in water resources and subsurface energy resources engineering research. Adv Water Resour. 2019;127:39–52.
Google Scholar | Crossref16. Hubeau, M, Mincke, J, Vanhove, C, et al. 11C-autoradiographs to image phloem loading. Front For Glob Change. 2019;2:20.
Google Scholar | Crossref17. Babst, BA, Ferrieri, R, Schueller, M. Detecting rapid changes in carbon transport and partitioning with carbon-11 (11C). In: Liesche, J , ed. Phloem: Methods and Protocols. 1st ed. Springer-Nature; 2019:163–176.
Google Scholar | Crossref18. Thorpe, MR, Minchin, PEH. In vivo veritas: radiotracers in studies of phloem transport of carbohydrate. In: Liesche, J , ed. Phloem: Methods and Protocols. 1st ed. Springer-Nature; 2019:177–194.
Google Scholar | Crossref19. Weisenberger, AG, Kross, B, Lee, SJ, et al. Nuclear physics detector technology applied to plant biology research. Nucl Instrum Methods Phys Res A. 2013;718:157–159.
Google Scholar | Crossref20. Alexoff, DL, Dewey, SL, Vaska, P, et al. PET imaging of this objects: measuring the effects of positron range and partial-volume averaging in the leaf of Nicotiana tabacum. Nuc Med Biol. 2011;38(2):191–200.
Google Scholar | Crossref | Medline21. Ferrieri, AP, Appel, H, Ferrieri, RA, Schultz, JC. Novel application of 2-[18F]fluoro-2-deoxy-D-glucose to study plant defenses. Nuc Med Biol. 2012;39(8):1152–1160.
Google Scholar | Crossref | Medline22. Jahnke, S, Menzel, MI, Schur, U. Combined MRI-PET dissects dynamic changes in plant structures and functions. Plant J. 2009;59(4):634–644.
Google Scholar | Crossref | Medline23. Wang, Q, Komarov, S, Mathews, AJ, Li, K, Topp, C, O’Sullivan, JA, Tai, YC. Combined 3D PET and optical projection tomography techniques for plant root phenotyping. 2015; arXiv Preprint arXiv:1501.00242.
Google Scholar24. Ferrieri, RA, Herman, E, Babst, B, Schueller, MJ. Managing the soil nitrogen cycle in agroecosystems. In: Lal, R, Stewart, BA, eds. Advances in Soil Science Soil Nitrogen Uses and Environmental Impacts (Advances in Soil Science). 1st ed. CRC Press; 2018:341–358.
Google Scholar | Crossref25. Furukawa, J, Yokota, H, Tanoi, K, et al. Vanadium uptake and an effect of vanadium treatment on 18F-labeled water movement in a cowpea plant by positron emitting tracer imaging system (PETIS). J Radioanal Nucl Chem. 2001;249:495–498.
Google Scholar | Crossref26. Kang, DJ, Nakanishi, TM, Kume, T, Ishii, R. Determination of 18F-labeled water movement to the leaf and its association with water relations in acid soil-tolerant rice varieties. J Crop Sci Biotech. 2009;12(4):261–265.
Google Scholar | Crossref27. Kiyomiya, S, Nakanishi, H, Uchida, H, et al. Light activates H215O flow in rice: detailed monitoring using a positron-emitting tracer imaging system (PETIS). Physiol Plant. 2001;113(3):359–367.
Google Scholar | Crossref | Medline28. Kume, T, Matsuhashi, S, Shimazu, M, et al. Uptake and transport of positron-emitting tracer 18F in plants. Appl Radiat Isot. 1997;48(8):1035–1043.
Google Scholar | Crossref29. Mori, S, Kiyomiya, S, Nakanishi, H, et al. Visualization of 15O-water flow in tomato and rice in the light and dark using a positron-emitting tracer imaging system (PETIS). Soil Sci. Plant Nutr. 2000;46(4):975–979.
Google Scholar | Crossref30. Nakanishi, TM, Okuni, Y, Furukawa, J, et al. Water movement in a plant sample by neutron beam analysis as well as positron emission tracer imaging system. J Radioanal Nucl Chem. 2003;255(1):149–153.
Google Scholar | Crossref31. Nakanishi, TM, Tanoi, K, Yokota, H, et al. 18F used as tracer to study water uptake and transport imaging of a cowpea plant. J Radioanal Nucl Chem. 2001;249(2):503–507.
Google Scholar | Crossref32. Nakanishi, TM, Yokota, H, Tanoi, K, et al. Comparison of 15O-labeled and 18F-labeled water uptake in a soybean plant by PETIS (positron emitting tracer imaging system). Radioisotopes. 2001;50(6):265–269.
Google Scholar | Crossref33. Ohya, T, Tanoi, K, Hamada, Y, et al. An analysis of long-distance water transport in the soybean stem using H215O. Plant Cell Physiol. 2008;49(5):718–729.
Google Scholar | Crossref | Medline34. Tanoi, K, Hojo, J, Nishioka, M, Nakanishi, TM, Suzuki, K. New technique to trace [15O]water uptake in a living plant with an imaging plate and a BGO detector system. J Radioanal Nucl Chem. 2005;263(2):547–552.
Google Scholar | Crossref35. Tsukamoto, T, Uchida, H, Nakanishi, H, et al. H215O translocation in rice was enhanced by 10 μM 5-aminolevulinic acid as monitored by positron emitting tracer imaging system (PETIS). Soil Sci Plant Nutr. 2004;50(7):1085–1088.
Google Scholar | Crossref36. Bughio, N, Nakanishi, H, Kiyomiya, S, et al. Real-time [11C]methionine translocation in barley in relation to mugineic acid phytosiderophore biosynthesis. Planta. 2001;213(5):708–715.
Google Scholar | Crossref | Medline37. Hayashi, H, Okada, Y, Mano, H, et al. Detection and characterization of nitrogen circulation through the sieve tubes and xylem vessels of rice plants. Plant Soil. 1997;196:223–237.
Google Scholar | Crossref38. Ishii, S, Suzui, N, Ito, S, et al. Real-time imaging of nitrogen fixation in an intact soybean plant with nodules using 13N-labeled nitrogen gas. Soil Sci Plant Nutr. 2009;55(5):660–666.
Google Scholar | Crossref39. Ishimaru, Y, Kim, S, Tsukamoto, T, et al. Mutational reconstructed ferric chelate reductase confers enhanced tolerance in rice to iron deficiency in calcareous soil. Proc Natl Acad Sci USA. 2007;104(18):7373–7378.
Google Scholar | Crossref | Medline40. Ishimaru, Y, Suzuki, M, Tsukamoto, T, et al. Rice plants take up iron as an Fe3+-phytosiderophore and as Fe2+. Plant J. 2006;45(3):335–346.
Google Scholar | Crossref | Medline41. Kasel, MCK, Schueller, MJ, Ferrieri, RA. Optimizing [13N]N2 radiochemistry for nitrogen-fixation in root nodules of legumes. J Label Compd Radiopharm. 2010;53(9):592–597.
Google Scholar | Crossref42. Kiyomiya, S, Nakanishi, H, Uchida, H, et al. Real time visualization of 13N-translocation in rice under different environmental conditions using positron emitting tracer imaging system. Plant Physiol. 2001;125(4):1743–1754.
Google Scholar | Crossref | Medline43. Liang, W, Nie, Y, Wang, J, et al. Three-dimensional positron emission tomography/computed tomography analysis of 13NO3- uptake and 13N distribution in growing kohlrabi. Anal Chem. 2011;83(2):578–584.
Google Scholar | Crossref | Medline44. Matsunami, H, Arima, Y, Watanabe, K, et al. 13N-nitrate uptake sites and rhizobium-infectible region in a single root of common bean and soybean. Soil Sci Plant Nutr. 1999;45(4):955–962.
Google Scholar | Crossref45. Nakanishi, H, Bughio, N, Matsuhashi, S, et al. Visualizing real time [11C]methionine translocation in Fe-sufficient and Fe-deficient barley using a positron emitting tracer imaging system (PETIS). J Exp Bot. 1999;50(334):637–643.
Google Scholar | Crossref46. Ohtake, N, Sato, T, Fujikake, H, et al. Rapid transport to pods and seeds in N-deficient soybean plants. J Exp Bot. 2001;52(355):277–283.
Google Scholar | Medline47. Pankievicz, VCS, Do Amaral, FP, Santos, KFDN, et al. Robust biological nitrogen fixation in a model grass-bacterial association. Plant J. 2015;81(6):907–919.
Google Scholar | Crossref | Medline48. Sato, T, Ohtake, N, Ohyama, T, et al. Analysis of nitrate absorption and transport in non-nodulated and nodulated soybean plants with 13NO3- and 15NO3-. Radioisotopes. 1999;48:450–458.
Google Scholar | Crossref49. Suzuki, M, Tsukamoto, T, Inoue, H, et al. Deoxymugineic acid increases Zn translocation in Zn-deficient rice plants. Plant Mol Biol. 2008;66(6):609–617.
Google Scholar | Crossref | Medline50. Tsukamoto, T, Nakanishi, H, Kiyomiya, S, et al. 52Mn translocation in barley monitored using a positron-emitting tracer imaging system. Soil Sci Plant Nutr. 2006;52(6):717–725.
Google Scholar | Crossref51. Tsukamoto, T, Nakanishi, H, Uchida, H, et al. 52Fe translocation in barley as monitored by a positron-emitting tracer imaging system (PETIS): evidence for the direct translocation of Fe from roots to young leaves via phloem. Plant Cell Physiol. 2009;50(1):48–57.
Google Scholar | Crossref | Medline52. Watanabe, S, Iida, Y, Suzui, N, et al. Production of no-carried-added 64Cu and applications to molecular imaging by PET and PETIS as a biomedical tracer. J Radioanal Nucl Chem. 2009;280(1):199–205.
Google Scholar | Crossref53. Agtuca, B, Rieger, E, Hilger, K, et al. Carbon-11 reveals opposing roles of auxin and salicylic acid in regulating leaf physiology, leaf metabolism, and resource allocation patterns that impact root growth in Zea mays. J Plant Growth Regul. 2014;33(2):328–339.
Google Scholar | Crossref54. Babst, BA, Ferrier, RA, Gray, DW, et al. Jasmonic acid induces rapid changes in carbon transport and partitioning in Populus. New Phytol. 2005;167(1):63–72.
Google Scholar | Crossref | Medline55. Babst, BA, Ferrieri, RA, Thorpe, MR, Orians, CM. Lymantira dispar herbivory induces rapid changes in ca

留言 (0)

沒有登入
gif