1.
van den Berg, NS, Miwa, M, KleinJan, GH, et al. (Near-Infrared) fluorescence-guided surgery under ambient light conditions: a next step to embedment of the technology in clinical routine. Ann Surg Oncol. 2016;23(8):2586–2595. doi:10.1245/s10434-016-5186-3
Google Scholar |
Crossref |
Medline2.
Zhang, XF, Zhang, J, Liu, L. Fluorescence properties of twenty fluorescein derivatives: lifetime, quantum yield, absorption and emission spectra. J Fluoresc. 2014;24(3):819–826. doi:10.1007/s10895-014-1356-5
Google Scholar |
Crossref |
Medline3.
van Willigen, DM, van den Berg, NS, Buckle, T, et al. Multispectral fluorescence guided surgery; a feasibility study in a phantom using a clinical-grade laparoscopic camera system. Am J Nucl Med Mol Imaging. 2017;7(3):138–147.
Google Scholar |
Medline4.
Wada, H, Hyun, H, Vargas, C, et al. Sentinel lymph node mapping of liver. Ann Surg Oncol. 2015;22(Suppl 3):S1147–1155. doi:10.1245/s10434-015-4601-5
Google Scholar |
Crossref |
Medline5.
Flynn, BP, DSouza, AV, Kanick, SC, Davis, SC, Pogue, BW. White light-informed optical properties improve ultrasound-guided fluorescence tomography of photoactive protoporphyrin IX. J Biomed Opt. 2013;18(4):046008. doi:10.1117/1.Jbo.18.4.046008
Google Scholar |
Crossref |
Medline6.
Lozovaya, GI, Masinovsky, Z, Sivash, AA. Protoporphyrin ix as a possible ancient photosensitizer: spectral and photochemical studies. Orig Life Evol Biosph. 1990;20:321–330. doi:10.1007/BF01808114
Google Scholar |
Crossref7.
Montcel, B, Mahieu-Williame, L, Armoiry, X, Meyronet, D, Guyotat, J. Two-peaked 5-ALA-induced PpIX fluorescence emission spectrum distinguishes glioblastomas from low grade gliomas and infiltrative component of glioblastomas. Biomed Opt Express. 2013;4(4):548–558. doi:10.1364/boe.4.000548
Google Scholar |
Crossref |
Medline8.
Burggraaf, J, Kamerling, IM, Gordon, PB, et al. Detection of colorectal polyps in humans using an intravenously administered fluorescent peptide targeted against c-Met. Nat Med. 2015;21(8):955–961. doi:10.1038/nm.3641
Google Scholar |
Crossref |
Medline |
ISI9.
Mujumdar, RB, Ernst, LA, Mujumdar, SR, Lewis, CJ, Waggoner, AS. Cyanine dye labeling reagents: sulfoindocyanine succinimidyl esters. Bioconjug Chem. 1993;4(2):105–111.
Google Scholar |
Crossref |
Medline |
ISI10.
Unkart, JT, Chen, SL, Wapnir, IL, González, JE, Harootunian, A, Wallace, AM. Intraoperative tumor detection using a ratiometric activatable fluorescent peptide: a first-in-human phase 1 study. Ann Surg Oncol. 2017;24(11):3167–3173. doi:10.1245/s10434-017-5991-3
Google Scholar |
Crossref |
Medline11.
Klehs, K, Spahn, C, Endesfelder, U, Lee, SF, Fürstenberg, A, Heilemann, M. Increasing the brightness of cyanine fluorophores for single-molecule and superresolution imaging. Chemphyschem. 2014;15(4):637–641. doi:10.1002/cphc.201300874
Google Scholar |
Crossref |
Medline12.
de Boer, E, Warram, JM, Tucker, MD, et al. In vivo fluorescence immunohistochemistry: localization of fluorescently labeled cetuximab in squamous cell carcinomas. Sci Rep. 2015;5:10169. doi:10.1038/srep10169
Google Scholar |
Crossref |
Medline13.
Mahalingam, SM, Kularatne, SA, Myers, CH, et al. Evaluation of novel tumor-targeted near-infrared probe for fluorescence-guided surgery of cancer. J Med Chem. 2018;61(21):9637–9646. doi:10.1021/acs.jmedchem.8b01115
Google Scholar |
Crossref |
Medline14.
Hoogstins, CE, Tummers, QR, Gaarenstroom, KN, et al. A novel tumor-specific agent for intraoperative near-infrared fluorescence imaging: a translational study in healthy volunteers and patients with ovarian cancer. Clin Cancer Res. 2016;22(12):2929–2938. doi:10.1158/1078-0432.Ccr-15-2640
Google Scholar |
Crossref |
Medline15.
Photoimmunotherapy (PIT) Study in Recurrent Head/Neck Cancer for Patients Who Have Failed at Least Two Lines of Therapy. 2018 ed. National Library of Medicine (US); 2018.
clinicaltrials.gov. Accessed March/April, 2020.
Google Scholar16.
Lavis, LD, Raines, RT. Bright ideas for chemical biology. ACS Chem Biol. 2008;3(3):142–155. doi:10.1021/cb700248m
Google Scholar |
Crossref |
Medline17.
Performance of SGM-101 for the Delineation of Primary and Recurrent Tumor and Metastases in Patients Undergoing Surgery for Colorectal Cancer. 2018 ed. National Library of Medicine (US); 2018.
Clinicaltrial.gov. Accessed March/April, 2020.
Google Scholar18.
Gutowski, M, Framery, B, Boonstra, MC, et al. SGM-101: an innovative near-infrared dye-antibody conjugate that targets CEA for fluorescence-guided surgery. Surg Oncol. 2017;26(2):153–162. doi:10.1016/j.suronc.2017.03.002
Google Scholar |
Crossref |
Medline19.
Fluorescence-guided Surgery Using cRGD-ZW800-1 in Oral Cancer 09/12/2019 ed. National Library of Medicine (US); 2019.
Clinicaltrials.gov. Accessed March/April, 2020.
Google Scholar20.
van den Berg, NS, Buckle, T, KleinJan, GH, van der Poel, HG, van Leeuwen, FWB. Multispectral fluorescence imaging during robot-assisted laparoscopic sentinel node biopsy: a first step towards a fluorescence-based anatomic roadmap. Eur Urol. 2017;72(1):110–117. doi:10.1016/j.eururo.2016.06.012
Google Scholar |
Crossref |
Medline21.
Jorzik, JJ, Bindewald, A, Dithmar, S, Holz, FG. Digital simultaneous fluorescein and indocyanine green angiography, autofluorescence, and red-free imaging with a solid-state laser-based confocal scanning laser ophthalmoscope. Retina. 2005;25(4):405–416. doi:10.1097/00006982-200506000-00003
Google Scholar |
Crossref |
Medline22.
Hensbergen, AW, Buckle, T, van Willigen, DM, et al. Hybrid tracers based on cyanine backbones targeting prostate-specific membrane antigen: tuning pharmacokinetic properties and exploring dye-protein interaction. J Nucl Med. 2020;61(2):234–241. doi:10.2967/jnumed.119.233064
Google Scholar |
Crossref |
Medline23.
Hachamovitch, R . Clinical application of rest thallium-201/Stress technetium-99 m sestamibi dual isotope myocardial perfusion single-photon emission computed tomography. Cardiol Rev. 1999;7(2):83–91. doi:10.1097/00045415-199903000-00011
Google Scholar |
Crossref |
Medline24.
Schulz, RB, Semmler, W. Fundamentals of optical imaging. Handb Exp Pharmacol. 2008;(185 pt 1):3–22. doi:10.1007/978-3-540-72718-7_1
Google Scholar |
Crossref |
Medline25.
Levenson, RM, Lynch, DT, Kobayashi, H, Backer, JM, Backer, MV. Multiplexing with multispectral imaging: from mice to microscopy. Ilar J. 2008;49(1):78–88. doi:10.1093/ilar.49.1.78
Google Scholar |
Crossref |
Medline |
ISI26.
Gobel, W, Brucker, D, Kienast, Y, et al. Optical needle endoscope for safe and precise stereotactically guided biopsy sampling in neurosurgery. Opt Express. 2012;20(24):26117–26126. doi:10.1364/oe.20.026117
Google Scholar |
Crossref |
Medline27.
Meershoek, P, KleinJan, GH, van Oosterom, MN, et al. Multispectral-fluorescence imaging as a tool to separate healthy from disease-related lymphatic anatomy during robot-assisted laparoscopy. J Nucl Med. 2018;59(11):1757–1760. doi:10.2967/jnumed.118.211888
Google Scholar |
Crossref |
Medline28.
Kobayashi, H, Hama, Y, Koyama, Y, et al. Simultaneous multicolor imaging of five different lymphatic basins using quantum dots. Nano Lett. 2007;7(6):1711–1716. doi:10.1021/nl0707003
Google Scholar |
Crossref |
Medline |
ISI29.
Dickinson, ME, Bearman, G, Tille, S, Lansford, R, Fraser, SE. Multi-spectral imaging and linear unmixing add a whole new dimension to laser scanning fluorescence microscopy. Biotechniques. 2001;31(6):1272, 1274–1276, 1278. doi:10.2144/01316bt01
Google Scholar |
Crossref |
Medline30.
Zimmermann, T, Marrison, J, Hogg, K, O’Toole, P. Clearing up the signal: spectral imaging and linear unmixing in fluorescence microscopy. Methods Mol Biol. 2014;1075:129–148. doi:10.1007/978-1-60761-847-8_5
Google Scholar |
Crossref |
Medline31.
Sexton, KJ, Zhao, Y, Davis, SC, Jiang, S, Pogue, BW. Optimization of fluorescent imaging in the operating room through pulsed acquisition and gating to ambient background cycling. Biomed Opt Express. 2017;8(5):2635–2648. doi:10.1364/boe.8.002635
Google Scholar |
Crossref |
Medline32.
van den Bos, J, Wieringa, FP, Bouvy, ND, Stassen, LPS. Optimizing the image of fluorescence cholangiography using ICG: a systematic review and ex vivo experiments. Surg Endosc. 2018;32(12):4820–4832. doi:10.1007/s00464-018-6233-x
Google Scholar |
Crossref |
Medline33.
Chin, PT, Welling, MM, Meskers, SC, Olmos, RAV, Tanke, H, van Leeuwen, FWB. Optical imaging as an expansion of nuclear medicine: Cerenkov-based luminescence vs fluorescence-based luminescence. Eur J Nucl Med Mol Imaging. 2013;40(8):1283–1291. doi:10.1007/s00259-013-2408-9
Google Scholar |
Crossref |
Medline34.
Kosaka, N, Ogawa, M, Sato, N, Choyke, PL, Kobayashi, H. In vivo real-time, multicolor, quantum dot lymphatic imaging. J Invest Dermatol. 2009;129(12):2818–2822. doi:10.1038/jid.2009.161
Google Scholar |
Crossref |
Medline |
ISI35.
Urano, Y, Sakabe, M, Kosaka, N, et al. Rapid cancer detection by topically spraying a gamma-glutamyltranspeptidase-activated fluorescent probe. Sci Transl Med. 2011;3(110):110ra119. doi:10.1126/scitranslmed.3002823
Google Scholar |
Crossref |
Medline36.
Kosaka, N, Ogawa, M, Choyke, PL, Kobayashi, H. Clinical implications of near-infrared fluorescence imaging in cancer. Future Oncol. 2009;5(9):1501–1511. doi:10.2217/fon.09.109
Google Scholar |
Crossref |
Medline37.
Carr, JA, Franke, D, Caram, JR, et al. Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green. Proc Natl Acad Sci U S A. 2018;115(17):4465–4470. doi:10.1073/pnas.1718917115
Google Scholar |
Crossref |
Medline38.
Vahrmeijer, AL, Hutteman, M, van der Vorst, JR, van de Velde, CJH, Frangioni, JV. Image-guided cancer surgery using near-infrared fluorescence. Nat Rev Clin Oncol. 2013;10(9):507–518. doi:10.1038/nrclinonc.2013.123
Google Scholar |
Crossref |
Medline |
ISI39.
van Leeuwen, FW, Hardwick, JC, van Erkel, AR. Luminescence-based imaging approaches in the field of interventional molecular imaging. Radiology. 2015;276(1):12–29. doi:10.1148/radiol.2015132698
Google Scholar |
Crossref |
Medline40.
Hu, Z, Fang, C, Li, B, et al. First-in-human liver-tumour surgery guided by multispectral fluorescence imaging in the visible and near-infrared-I/II windows. Nat Biomed Eng. 2020;4(3):259–271. doi:10.1038/s41551-019-0494-0
Google Scholar |
Crossref |
Medline41.
Deal, J, Mayes, S, Browning, C, et al. Identifying molecular contributors to autofluorescence of neoplastic and normal colon sections using excitation-scanning hyperspectral imaging. J Biomed Opt. 2018;24(2):1–11. doi:10.1117/1.Jbo.24.2.021207
Google Scholar |
Crossref |
Medline42.
Rich, RM, Mummert, M, Gryczynski, Z, et al. Elimination of autofluorescence in fluorescence correlation spectroscopy using the AzaDiOxaTriAngulenium (ADOTA) fluorophore in combination with time-correlated single-photon counting (TCSPC). Anal Bioanal Chem. 2013;405(14):4887–4894. doi:10.1007/s00216-013-6879-0
Google Scholar |
Crossref |
Medline43.
Kim, SW, Lee, HS, Lee, KD. Intraoperative real-time localization of parathyroid gland with near infrared fluorescence imaging. Gland Surg. 2017;6(5):516–524. doi:10.21037/gs.2017.05.08
Google Scholar |
Crossref |
Medline44.
McWade, MA, Paras, C, White, LM, Phay, JE, Mahadevan-Jansen, A, Broome, JT. A novel optical approach to intraoperative detection of parathyroid glands. Surgery. 2013;154(6):1371–1377; discussion 1377. doi:10.1016/j.surg.2013.06.046
Google Scholar |
Crossref |
Medline45.
Ewelt, C, Nemes, A, Senner, V, et al. Fluorescence in neurosurgery: its diagnostic and therapeutic use. Review of the literature. J Photochem Photobiol B. 2015;148:302–309. doi:10.1016/j.jphotobiol.2015.05.002
Google Scholar |
Crossref |
Medline46.
Maugeri, R, Villa, A, Pino, M, et al. With a little help from my friends: the role of intraoperative fluorescent dyes in the surgical management of high-grade gliomas. Brain Sci. 2018;8(2):31. doi:10.3390/brainsci8020031
Google Scholar |
Crossref47.
Acerbi, F, Restelli, F, Broggi, M, Schiariti, M, Ferroli, P. Feasibility of simultaneous sodium fluorescein and indocyanine green injection in neurosurgical procedures. Clin Neurol Neurosurg. 2016;146:123–129. doi:10.1016/j.clineuro.2016.05.003
Google Scholar |
Crossref |
Medline48.
Lane, B, Bohnstedt, BN, Cohen-Gadol, AA. A prospective comparative study of microscope-integrated intraoperative fluorescein and indocyanine videoangiograp
留言 (0)