Targeted Imaging Agent to HSP70 Induced In Vivo

1. Schmitt, E, Gehrmann, M, Brunet, M, Multhoff, G, Garrido, C. Intracellular and extracellular functions of heat shock proteins: repercussions in cancer therapy. J Leukoc Biol. 2007;81(1):15–27.
Google Scholar | Crossref | Medline2. Soti, C, Nagy, E, Giricz, Z, Vigh, L, Csermely, P, Ferdinandy, P. Heat shock proteins as emerging therapeutic targets. Br J Pharmacol. 2005;146(1):769–780.
Google Scholar | Crossref | Medline3. Calderwood, SK, Theriault, JR, Gong, J. Message in a bottle: role of the 70-kDa heat shock protein family in anti-tumor immunity. Eur J Immunol. 2005;35(9):2518–2527.
Google Scholar | Crossref | Medline4. Garrido, C, Brunet, M, Didelot, C, Zermati, Y, Schmitt, E, Kroemer, G. Heat shock proteins 27 and 70: antiapoptotic proteins with tumorigenic properties. Cell Cycle. 2006;5(22):2592–2601.
Google Scholar | Crossref | Medline | ISI5. Ciocca, DR, Calderwood, SK. Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones. 2005;10(2):86–103.
Google Scholar | Crossref | Medline6. Kregel, KC . Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J Appl Physiol (1985). 2002;92(5):2177–2186.
Google Scholar | Crossref | Medline7. Macario, AJ, De Macario, EC. Molecular chaperones: multiple functions, pathologies, and potential applications. Front Biosci. 2007;12:2588–2600.
Google Scholar | Crossref | Medline8. Murphy, ME . The HSP70 family and cancer. Carcinogenesis. 2013;34(6):1181–1188.
Google Scholar | Crossref | Medline9. Wang, X, Meijuan, C, Jing, Z, Xu, Z. HSP27, 70 and 90, anti-apoptotic proteins, in clinical cancer therapy (review). Int J Oncol. 2014;45(1):18–30.
Google Scholar | Crossref | Medline | ISI10. Lee, AS . GRP78 induction in cancer: therapeutic and prognostic implications. Cancer Res. 2007;67(8):3496–3499.
Google Scholar | Crossref | Medline11. Liu, T, Christopher, KD, Shousong, C. Comprehensive review on the HSC70 functions, interactions with related molecules and involvement in clinical diseases and therapeutic potential. Pharmacol Ther. 2012;136(3):354–374.
Google Scholar | Crossref | Medline12. Rérole, AL, Gaëtan, J, Carmen, G. Hsp70: anti-apoptotic and tumorigenic protein. Methods Mol Biol. 2011;787:205–230.
Google Scholar | Crossref | Medline13. Jäättelä, M, Wissing, D, Bauer, PA, Li, GC. Major heat shock protein hsp70 protects tumor cells from tumor necrosis factor cytotoxicity. EMBO J. 1992;11(10):3507–3512.
Google Scholar | Crossref | Medline14. Kubota, H, Soh, Y, Eri, I, et al. Increased expression of co-chaperone HOP with HSP90 and HSC70 and complex formation in human colonic carcinoma. Cell Stress Chaperones. 2010;15(6):1003–1111.
Google Scholar | Crossref | Medline15. Moghanibashi, M, Ferdous, RJ, Zahra-Soheila, S, et al. Esophageal cancer alters the expression of nuclear pore complex binding protein Hsc70 and eIF5A-1. Funct Integr Genomics. 2013;13(2):253–260.
Google Scholar | Crossref | Medline16. Bakkenist, CJ, Koreth, J, Williams, CS, Hunt, NC, McGee, JO. Heat shock cognate 70 mutations in sporadic breast carcinoma. Cancer Res. 1999;59(17):4219–4221.
Google Scholar | Medline17. Rusin, M., Helena, Z, Małgorzata, K, et al. Intronic polymorphism (1541-1542delGT) of the constitutive heat shock protein 70 gene has functional significance and shows evidence of association with lung cancer risk. Mol Carcinog. 2004;39(3):155–163.
Google Scholar | Crossref | Medline18. Sandoval, JA, Derek, JH, Heather, AW, et al. Novel peptides secreted from human neuroblastoma: useful clinical tools? J Pediatr Surg. 2006;41(1):245–251.
Google Scholar | Crossref | Medline19. Rohde, M, Daugaard, M, Jensen, MH, Helin, K, Nylandsted, J, Jaattela, M. Members of the heat-shock protein 70 family promote cancer cell growth by distinct mechanisms. Genes Dev. 2005;19(5):570–582.
Google Scholar | Crossref | Medline20. Seo, JS, Park, YM, Kim, JI, et al. T cell lymphoma in transgenic mice expressing the human Hsp70 gene. Biochem Biophys Res Commun. 1996;218(2):582–587.
Google Scholar | Crossref | Medline21. Sliutz, G, Karlseder, J, Tempfer, C, Orel, L, Holzer, G, Simon, MM. Drug resistance against gemcitabine and topotecan mediated by constitutive hsp70 overexpression in vitro: implication of quercetin as sensitiser in chemotherapy. Br J Cancer. 1996;74(2):172–177.
Google Scholar | Crossref | Medline22. Mosser, DD, Morimoto, RI. Molecular chaperones and the stress of oncogenesis. Oncogene. 2004;23(16):2907–2918.
Google Scholar | Crossref | Medline23. Whitesell, L, Lindquist, S. Inhibiting the transcription factor HSF1 as an anticancer strategy. Expert Opin Ther Targets. 2009;13(4):469–478.
Google Scholar | Crossref | Medline24. Powers, MV, Workman, P. Inhibitors of the heat shock response: biology and pharmacology. FEBS Lett. 2007;581(19):3758–3769.
Google Scholar | Crossref | Medline25. Nishikawa, K, Shibasaki, C, Hiratsuka, M, Arakawa, M, Takahashi, K, Takeuchi, T. Antitumor spectrum of deoxyspergualin and its lack of cross-resistance to other antitumor agents. J Antibiot. 1991;44(10):1101–1109.
Google Scholar | Crossref | Medline26. Plowman, J, Harrison, SD, Trader, MW, et al. Preclinical antitumor activity and pharmacological properties of deoxyspergualin. Cancer Res. 1987;47(3):685–689.
Google Scholar | Medline27. Nemoto, K, Abe, F, Takita, T, Nakamura, T, Takeuchi, T, Umezawa, H. Suppression of experimental allergic encephalomyelitis in guinea pigs by spergualin and 15-deoxyspergualin. J Antibiot (Tokyo). 1987;40(8):1193–1194.
Google Scholar | Crossref | Medline28. Nemoto, K, Ito, J, Abe, F, Nakamura, T, Takeuchi, T, Umezawa, H. Suppression of humoral immunity in dogs by 15-deoxyspergualin. J Antibiot (Tokyo). 1987;40(7):1065–2056.
Google Scholar | Crossref | Medline29. Nemoto, K, Ito, J, Hayashi, M, et al. Effects of spergualin and 15-deoxyspergualin on the development of graft-versus-host disease in mice. Transplant Proc. 1987;19(4):3520–3521.
Google Scholar | Medline30. Masuda, T, Mizutani, S, Iijima, M, et al. Immunosuppressive activity of 15-deoxyspergualin and its effect on skin allografts in rats. J Antibiot (Tokyo). 1987;40(11):1612–1618.
Google Scholar | Crossref | Medline31. Nadeau, K, Nadler, SG, Saulnier, M, Tepper, MA, Walsh, CT. Quantitation of the interaction of the immunosuppressant deoxyspergualin and analogs with Hsc70 and Hsp90. Biochemistry. 1994;33(9):2561–2567.
Google Scholar | Crossref | Medline32. Nadler, SG, Tepper, MA, Schacter, B, Mazzucco, CE. Interaction of the immunosuppressant deoxyspergualin with a member of the Hsp70 family of heat shock proteins. Science. 1992;258(5081):484–486.
Google Scholar | Crossref | Medline33. Hiratsuka, M, Hiroshi, K, Katsutoshi, T, Tomio, T, Mitsuo, M. Cytostatic effect of deoxyspergualin on a murine leukemia cell line L1210. J Cancer Res. 1991;82(10):1065–1068.
Google Scholar34. Nishikawa, K, Shibasaki, C, Uchida, T, Takahashi, K, Takeuchi, T. The nature of in vivo cell-killing of deoxyspergualin, and its implication in combination with other antitumor agents. J Antibiot (Tokyo). 1991;44(11):1237–1246.
Google Scholar | Crossref | Medline35. Oikawa, T, Hasegawa, M, Morita, I, et al. Effect of 15-deoxyspergualin, a microbial angiogenesis inhibitor, on the biological activities of bovine vascular endothelial cells. Anticancer Drugs. 1992;3(3):293–299.
Google Scholar | Crossref | Medline36. Durand, P, Peralba, P, Renaut, P. A new efficient synthesis of the immunosuppressive agent (+/-)-15-deoxyspergualin. Tetrahedron. 2001;57(14):2757–2760.
Google Scholar | Crossref37. Lebreton, L, Jost, E, Carboni, B, et al. Structure-immunosuppressive activity relationships of new analogues of 15-deoxyspergualin. 2. structural modifications of the spermidine moiety. J Med Chem. 1999;42(23):4749–4763.
Google Scholar | Crossref | Medline38. Raymond, JB, James, SM. Total synthesis of (&)-15-deoxyspergualin. J Org Chem. 1987;52(9):1700–1703.
Google Scholar | Crossref39. Philippe, D, Philippe, R, Patrice, R. 15-Deoxyspergualin: a new and efficient enantioselective synthesis which allows the definitive assignment of the absolute configuration. J Org Chem. 1998;63(26):9723–9727.
Google Scholar | Crossref40. Takeuchi, T, Iinuma, H, Kunimoto, S, et al. A new antitumor antibiotic, spergualin: isolation and antitumor activity. J Antibiot (Tokyo). 1981;34(12):1619–1621.
Google Scholar | Crossref | Medline41. Umezawa, H, Kondo, S, Iinuma, H, et al. Structure of an antitumor antibiotic, spergualin. J Antibiot (Tokyo). 1981;34(12):1622–1624.
Google Scholar | Crossref | Medline42. Kondo, S, Iwasawa, H, Ikeda, D, et al. The total synthesis of spergualin, an antitumor antibiotic. J Antibiot (Tokyo). 1981;34(12):1625–1627.
Google Scholar | Crossref | Medline43. Umeda, Y, Moriguchi, M, Kuroda, H, et al. Synthesis and antitumor activity of spergualin analogues. I. chemical modification of 7-guanidino-3-hydroxyacyl moiety. J Antibiot (Tokyo). 1985;38(7):886–898.
Google Scholar | Crossref | Medline44. Umeda, Y, Moriguchi, M, Ikai, K, et al. Synthesis and antitumor activity of spergualin analogues. III. novel method for synthesis of optically active 15-deoxyspergualin and 15-deoxy-11-Omethylspergualin. J Antibiot (Tokyo). 1987;40(9):1316–1324.
Google Scholar | Crossref | Medline45. Lebreton, L, Annat, J, Derrepas, P, Dutartre, P, Renaut, P. Structure-immunosuppressive activity relationships of new analogues of 15-deoxyspergualin. 1. structural modifications of the hydroxyglycine moiety. J Med Chem. 1999;42(2):277–290.
Google Scholar | Crossref | Medline46. Nishizawa, R, Takei, Y, Yoshida, M, et al. Synthesis and biological activity of spergualin analogues. I. J Antibiot (Tokyo). 1988;41(11):1629–1643.
Google Scholar | Crossref | Medline47. Ghosh, P, Li, KCP, Lee, D. Radiosynthesis of [18F]-Fluoromethyl deoxyspergualin for molecular imaging of heat shock proteins. Appl Radiat Isot. 2011;69(3):609–613.
Google Scholar | Crossref | Medline48. Wang, X, Zhang, J, Wu, H, Li, Y, Conti, SP, Chen, K. PET imaging of Hsp90 expression in pancreatic cancer using a new 64Cu-labeled dimeric Sansalvamide A decapeptide. Amino Acids. 2018;50(7):897–907.
Google Scholar | Crossref | Medline49. Niu, G, Li, Z, Cao, Q, Chen, X. Monitoring therapeutic response of human ovarian cancer to 17-DMAG by noninvasive PET imaging with 64Cu-DOTA-trastuzumab. Eur J Nucl Med Mol Imaging. 2009;36(9):1510–1519.
Google Scholar | Crossref | Medline50. Gehrmann, M, Stangl, S, Foulds, AG, et al. Tumor imaging and targeting potential of an Hsp70 derived 14-mer peptide. PLoS One. 2014;9(8):e105344.
Google Scholar | Crossref | Medli

留言 (0)

沒有登入
gif