Molecular MR-Imaging for Noninvasive Quantification of the Anti-Inflammatory Effect of Targeting Interleukin-1β in a Mouse Model of Aortic Aneurysm

1. Benjamin, EJ, Muntner, P, Alonso, A, et al. Heart disease and stroke statistics—2019 update: a report from the American Heart Association. Circulation. 2019;139(10):e56–e528. doi:10.1161/CIR.0000000000000659
Google Scholar | Crossref | Medline2. Shimizu, K, Mitchell, RN, Libby, P. Inflammation and cellular immune responses in abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol. 2006;26(6):987–994. doi:10.1161/01.ATV.0000214999.12921.4f
Google Scholar | Crossref | Medline3. Anidjar, S, Dobrin, PB, Eichorst, M, et al. Correlation of inflammatory infiltrate with the enlargement of experimental aortic aneurysms. J Vasc Surg. 1992;16(2):139–147. doi:10.1067/mva.1992.35585
Google Scholar | Crossref | Medline4. Brophy, CM, Reilly, JM, Smith, GJ, et al. The role of inflammation in nonspecific abdominal aortic aneurysm disease. Ann Vasc Surg. 1991;5(3):229–233. doi:10.1007/BF02329378
Google Scholar | Crossref | Medline5. Freestone, T, Turner, RJ, Coady, A, et al. Inflammation and matrix metalloproteinases in the enlarging abdominal aortic aneurysm. Arterioscler Thromb Vasc Biol. 1995;15(8):1145–1151.
Google Scholar | Crossref | Medline | ISI6. Hellenthal, FA, Buurman, WA, Wodzig, WK, et al. Biomarkers of AAA progression. Part 1: extracellular matrix degeneration. Nat Rev Cardiol. 2009;6(7):464–474. doi:10.1038/nrcardio.2009.80
Google Scholar | Crossref | Medline7. Farand, P, Garon, A, Plante, GE. Structure of large arteries: orientation of elastin in rabbit aortic internal elastic lamina and in the elastic lamellae of aortic media. Microvasc Res. 2007;73(2):95–99. 2006/12/19. doi:10.1016/j.mvr.2006.10.005
Google Scholar | Crossref | Medline8. Dinarello, CA . A clinical perspective of IL-1β as the gatekeeper of inflammation. Eur J Immunol. 2011;41(5):1203–1217. doi:10.1002/eji.201141550
Google Scholar | Crossref | Medline9. Isoda, K, Akita, K, Kitamura, K, et al. Inhibition of interleukin-1 suppresses angiotensin II-induced aortic inflammation and aneurysm formation. Int J Cardiol. 2018;270:21–227. doi:10.1016/j.ijcard.2018.05.072
Google Scholar | Crossref | Medline10. Johnston, WF, Salmon, M, Su, G, et al. Genetic and pharmacologic disruption of interleukin-1β signaling inhibits experimental aortic aneurysm formation. Arterioscler Thromb Vasc Biol. 2013;33(2):294–304. doi:10.1161/ATVBAHA.112.300432
Google Scholar | Crossref | Medline11. Juvonen, J, Surcel, HM, Satta, J, et al. Elevated circulating levels of inflammatory cytokines in patients with abdominal aortic aneurysm. Arterioscler Thromb Vasc Biol. 1997;17:2843–2847. doi: 10.1161/01.atv.17.11.2843
Google Scholar | Crossref | Medline | ISI12. Pearce, WH, Sweis, I, Yao, JS, et al. Interleukin-1 beta and tumor necrosis factor-alpha release in normal and diseased human infrarenal aortas. J Vasc Surg. 1992;16(5):784–789.
Google Scholar | Crossref | Medline13. Richards, JM, Semple, SI, MacGillivray, TJ, et al. Abdominal aortic aneurysm growth predicted by uptake of ultrasmall superparamagnetic particles of iron oxide: a pilot study. Circ Cardiovasc Imaging. 2011;4(3):274–281. doi:10.1161/CIRCIMAGING.110.959866
Google Scholar | Crossref | Medline | ISI14. Brangsch, J, Reimann, C, Kaufmann, JO, et al. Concurrent molecular magnetic resonance imaging of inflammatory activity and extracellular matrix degradation for the prediction of aneurysm rupture. Circ Cardiovasc Imaging. 2019;12(3):e008707. doi:10.1161/CIRCIMAGING.118.008707
Google Scholar | Crossref | Medline15. Turner, GH, Olzinski, AR, Bernard, RE, et al. Assessment of macrophage infiltration in a murine model of abdominal aortic aneurysm. J Magn Reson Imaging. 2009;30(2):455–460. doi:10.1002/jmri.21843
Google Scholar | Crossref | Medline16. Yao, Y, Wang, Y, Zhang, Y, et al. In vivo imaging of macrophages during the early-stages of abdominal aortic aneurysm using high resolution MRI in ApoE mice. PLoS One. 2012;7(3):e33523. doi:10.1371/journal.pone.0033523
Google Scholar | Crossref | Medline17. Klink, A, Heynens, J, Herranz, B, et al. In vivo characterization of a new abdominal aortic aneurysm mouse model with conventional and molecular magnetic resonance imaging. J Am Coll Cardiol. 2011;58(24):2522–2530. doi:10.1016/j.jacc.2011.09.017
Google Scholar | Crossref | Medline18. Botnar, RM, Wiethoff, AJ, Ebersberger, U, et al. In vivo assessment of aortic aneurysm wall integrity using elastin-specific molecular magnetic resonance imaging. Circ Cardiovasc Imaging. 2014;7(4):679–689. doi:10.1161/CIRCIMAGING.113.001131
Google Scholar | Crossref | Medline19. Makowski, MR, Preissel, A, von Bary, C, et al. Three-dimensional imaging of the aortic vessel wall using an elastin-specific magnetic resonance contrast agent. Invest Radiol. 2012;47(7):438–444. doi:10.1097/RLI.0b013e3182588263
Google Scholar | Crossref | Medline20. Geiger, T, Towbin, H, Cosenti-Vargas, A, et al. Neutralization of interleukin-1 beta activity in vivo with a monoclonal antibody alleviates collagen-induced arthritis in DBA/1 mice and prevents the associated acute-phase response. Clin Exp Rheumatol. 1993;11(5):515–522.
Google Scholar | Medline21. Awan, Z, Denis, M, Roubtsova, A, et al. Reducing vascular calcification by anti-IL-1β monoclonal antibody in a mouse model of familial hypercholesterolemia. Angiology. 2016;67(2):157–167. doi:10.1177/0003319715583205
Google Scholar | SAGE Journals | ISI22. Ridker, PM, Everett, BM, Thuren, T, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med. 2017;377(12):1119–1131. doi:10.1056/NEJMoa1707914
Google Scholar | Crossref | Medline23. Makowski, MR, Wiethoff, AJ, Blume, U, et al. Assessment of atherosclerotic plaque burden with an elastin-specific magnetic resonance contrast agent. Nat Med. 2011;17(3):383–388. doi:10.1038/nm.2310
Google Scholar | Crossref | Medline24. Onthank, D, Yalamanchili, P, Cesati, R, et al. Abstract 1914: BMS753951: A novel low molecular weight magnetic resonance contrast agent selective for arterial wall imaging. Circulation. 2007;116:II_411–II_412. doi:10.1161/circ.116.suppl_16.II_411-c
Google Scholar25. von Bary, C, Makowski, M, Preissel, A, et al. MRI of coronary wall remodeling in a swine model of coronary injury using an elastin-binding contrast agent. Circ Cardiovasc Imaging. 2011;4(2):147–155. doi:10.1161/CIRCIMAGING.109.895607
Google Scholar | Crossref | Medline26. Johnston, WF, Salmon, M, Pope, NH, et al. Inhibition of interleukin-1β decreases aneurysm formation and progression in a novel model of thoracic aortic aneurysms. Circulation. 2014;130(11 Suppl 1):S51–S59. doi:10.1161/CIRCULATIONAHA.113.006800
Google Scholar | Crossref | Medline27. Newman, KM, Jean-Claude, J, Li, H, et al. Cytokines that activate proteolysis are increased in abdominal aortic aneurysms. Circulation. 1994;90(5 Pt 2): II224–227.
Google Scholar | Medline28. Abdul-Hussien, H, Hanemaaijer, R, Kleemann, R, et al. The pathophysiology of abdominal aortic aneurysm growth: corresponding and discordant inflammatory and proteolytic processes in abdominal aortic and popliteal artery aneurysms. J Vasc Surg. 2010;51(6):1479–1487. doi:10.1016/j.jvs.2010.01.057
Google Scholar | Crossref | Medline29. Pyo, R, Lee, JK, Shipley, JM, et al. Targeted gene disruption of matrix metalloproteinase-9 (gelatinase B) suppresses development of experimental abdominal aortic aneurysms. J Clin Invest. 2000;105(11):1641–1649. doi:10.1172/JCI8931
Google Scholar | Crossref | Medline | ISI30. Daugherty, A, Cassis, LA. Mechanisms of abdominal aortic aneurysm formation. Curr Atheroscler Rep. 2002;4(3):222–227. doi:10.1007/s11883-002-0023-5
Google Scholar | Crossref | Medline31. Dinarello, CA . Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood. 2011;117(14):3720–3732. doi:10.1182/blood-2010-07-273417
Google Scholar | Crossref | Medline | ISI32. Hashimoto, Y, Fukazawa, R, Nagi-Miura, N, et al. Interleukin-1beta inhibition attenuates vasculitis in a mouse model of Kawasaki disease. J Nippon Med Sch. 2019;86(2):108–116. doi:10.1272/jnms.JNMS.2019_86-206
Google Scholar | Crossref | Medline33. Kitamura, K, Isoda, K, Akita, K, et al. Abstract 11695: An anti-interleukin-1β antibody suppresses both angiotensin II-induced renal inflammation and hypertension. Circulation. 2017;136:A11695–A11695. doi:10.1161/circ.136.suppl_1.11695
Google Scholar34. Golledge, J, Tsao, PS, Dalman, RL, et al. Circulating markers of abdominal aortic aneurysm presence and progression. Circulation. 2008;118(23):2382–2392. doi:10.1161/CIRCULATIONAHA.108.802074
Google Scholar | Crossref | Medline | ISI35. Hong, H, Yang, Y, Liu, B, et al. Imaging of abdominal aortic aneurysm: the present and the future. Curr Vasc Pharmacol. 2010;8(6):808–819. doi:10.2174/157016110793563898.
Google Scholar | Crossref | Medline36. Okamura, H, Pisani, LJ, Dalal, AR, et al. Assessment of elastin deficit in a Marfan mouse aneurysm model using an elastin-specific magnetic resonance imaging contrast agent. Circ Cardiovasc Imaging 2014;7(4):690–696. doi:10.1161/CIRCIMAGING.114.001658
Google Scholar | Crossref | Medline37. Rooke, TW, Hirsch, AT, Misra, S, et al. 2011ACCF/AHA focused update of the guideline for the management of patients with peripheral artery disease (updating the 2005 guideline): a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. J Am Coll Cardiol. 2011;58(19):2020–2045. doi:10.1016/j.jacc.2011.08.023
Google Scholar | Crossref | Medline | ISI38. Sakalihasan, N, Limet, R, Defawe, OD. Abdominal aortic aneurysm. Lancet. 2005;365(9470):1577–1589. doi:10.1016/S0140-6736(05)66459-8
Google Scholar | Crossref | Medline | ISI39. Ridker, PM, Howard, CP, Walter, V, et al. Effects of interleukin-1beta inhibition with canakinumab on hemoglobin A1c, lipids, C-reactive protein, interleukin-6, and fibrinogen: a phase IIb randomized, placebo-controlled trial. Circulation. 2012;126(23):2739–2748. doi:10.1161/CIRCULATIONAHA.112.122556
Google Scholar | Crossref | Medline | ISI40. Daugherty, A, Manning, MW, Cassis, LA. Angiotensin II promotes atherosclerotic lesions and aneurysms in apolipoprotein E-deficient mice. J Clin Invest. 2000;105(11):1605–1612. 2000/06/07. doi:10.1172/JCI7818
Google Scholar | Crossref | Medline | ISI41. Daugherty, A, Cassis, LA. Mouse models of abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol. 2004;24(3):429–434. doi:10.1161/01.ATV.0000118013.72016.ea
Google Scholar | Crossref | Medline | ISI42. Cassis, LA M, Thayer, S, et al. ANG II infusion promotes abdominal aortic aneurysms independent of increased blood pressure in hypercholesterolemic mice. Am J Physiol Heart Circ Physiol. 2009;296(5):H1660–1665. doi:10.1152/ajpheart.00028.2009
Google Scholar | Crossref | Medline43. ongo, GM, Xiong, W, Greiner, TC, et al. Matrix metalloproteinases 2 and 9 work in concert to produce aortic aneurysms. J Clin Invest. 2002;110(5):25–632. doi:10.1172/JCI15334
Google Scholar44. Ishibashi, M, Egashira, K, Zhao, Q, et al. Bone marrow-derived monocyte chemoattractant protein-1 receptor CCR2 is critical in angiotensin II-induced acceleration of atherosclerosis and aneurysm formation in hypercholesterolemic mice. Arterioscler Thromb Vasc Biol. 2004;24(11):e174–178. doi:10.1161/01.ATV.0000143384.69170.2d
Google Scholar | Crossref | Medline

留言 (0)

沒有登入
gif