1.
Ziemssen, T, Kern, R, Thomas, K. Multiple sclerosis: clinical profiling and data collection as prerequisite for personalized medicine approach. BMC Neurol. 2016;16(1):124.
Google Scholar |
Medline2.
Hauser, SL. Multiple lessons for multiple sclerosis. Mass Med Soc. 2008;359:1838-1841.
Google Scholar3.
Dendrou, CA, Fugger, L, Friese, MA. Immunopathology of multiple sclerosis. Nat Rev Immunol. 2015;15(9):545-558.
Google Scholar |
Crossref |
Medline |
ISI4.
Constantinescu, CS, Farooqi, N, O’Brien, K, Gran, B. Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br J Pharmacol. 2011;164(4):1079-1106.
Google Scholar |
Crossref |
Medline |
ISI5.
Di Filippo, M, Portaccio, E, Mancini, A, Calabresi, P. Multiple sclerosis and cognition: synaptic failure and network dysfunction. Nat Rev Neurosci. 2018;19(10):599-609.
Google Scholar |
Crossref |
Medline6.
Harris, C. Nursing practice in Multiple Sclerosis: A Core Curriculum. Demos Medical Publishing; 2003.
Google Scholar7.
McDonald, WI, Compston, A, Edan, G, et al. Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann Neurol. 2001;50(1):121-127.
Google Scholar |
Crossref |
Medline |
ISI8.
Lublin, FD, Reingold, SC, Cohen, JA, et al. Defining the clinical course of multiple sclerosis. The 2013 revisions. Neurology. 2014;83(3):278-286.
Google Scholar |
Crossref |
Medline |
ISI9.
Compston, A, Coles, A. Multiple sclerosis. Lancet. 2008;372(9648):1502-1517.
Google Scholar |
Crossref |
Medline |
ISI10.
Rosenling, T, Attali, A, Luider, TM, Bischoff, R. The experimental autoimmune encephalomyelitis model for proteomic biomarker studies: from rat to human. Clin Chim Acta. 2011;412(11-12):812-822.
Google Scholar |
Crossref |
Medline11.
Group, BDW, Atkinson, AJ, Colburn, WA, et al. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Therap. 2001;69(3):89-95.
Google Scholar |
Medline12.
McDermott, JE, Wang, J, Mitchell, H, et al. Challenges in biomarker discovery: combining expert insights with statistical analysis of complex omics data. Exp Opin Med Diagn. 2013;7(1):37-51.
Google Scholar |
Crossref |
Medline13.
Beecham, AH, Patsopoulos, NA, Xifara, DK, et al. Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nat Genet. 2013;45(11):1353-1360.
Google Scholar |
Crossref |
Medline |
ISI14.
Singh, V, Tripathi, A, Dutta, RJP. Proteomic approaches to decipher mechanisms underlying pathogenesis in multiple sclerosis patients. Proteomics. 2019;16:1800335.
Google Scholar |
Medline15.
Goossens, N, Nakagawa, S, Sun, X, Hoshida, Y. Cancer biomarker discovery and validation. Transl Cancer Res. 2015;4(3):256.
Google Scholar |
Medline16.
Amiri-Dashatan, N, Koushki, M, Abbaszadeh, HA, Rostami-Nejad, M, Rezaei-Tavirani, M. Proteomics applications in health: biomarker and drug discovery and food industry. Iran J Pharm Res. 2018;17(4):1523-1536.
Google Scholar |
Medline17.
Farias, AS, Santos, LM. How can proteomics elucidate the complexity of multiple sclerosis? Proteomics Clin Appl. 2015;9(9-10):844-847.
Google Scholar |
Medline18.
Goldsmith, P, Fenton, H, Morris-Stiff, G, Ahmad, N, Fisher, J, Prasad, KR. Metabonomics: a useful tool for the future surgeon. J Surg Res. 2010;160(1):122-132.
Google Scholar |
Medline19.
Sas, KM, Karnovsky, A, Michailidis, G, Pennathur, S. Metabolomics and diabetes: analytical and computational approaches. Diabetes. 2015;64(3):718-732.
Google Scholar |
Medline20.
Orton, DJ, Doucette, AA. Proteomic workflows for biomarker identification using mass spectrometry—technical and statistical considerations during initial discovery. Proteomes. 2013;1(2):109-127.
Google Scholar |
Medline21.
Mischak, H, Kolch, W, Aivaliotis, M, et al. Comprehensive human urine standards for comparability and standardization in clinical proteome analysis. Proteomics Clin Appl. 2010;4(4):464-478.
Google Scholar |
Medline22.
Füzéry, AK, Levin, J, Chan, MM, Chan, DW. Translation of proteomic biomarkers into FDA approved cancer diagnostics: issues and challenges. Clin Proteomics. 2013;10(1):13.
Google Scholar |
Crossref |
Medline |
ISI23.
Ghaste, M, Mistrik, R, Shulaev, V. Applications of Fourier transform ion cyclotron resonance (FT-ICR) and orbitrap based high resolution mass spectrometry in metabolomics and lipidomics. Int J Mol Sci. 2016;17(6):816-837.
Google Scholar24.
Lapek, JD, Greninger, P, Morris, R, et al. Detection of dysregulated protein-association networks by high-throughput proteomics predicts cancer vulnerabilities. Nat Biotechnol. 2017;35(10):983-992.
Google Scholar |
Medline25.
Ziemssen, T, Akgün, K, Brück, W. Molecular biomarkers in multiple sclerosis. J Neuroinflammation. 2019;16(1):272.
Google Scholar |
Medline26.
Chait, BT. Mass spectrometry in the postgenomic era. Annu Rev Biochem. 2011;80:239-246.
Google Scholar |
Medline27.
Aslam, B, Basit, M, Nisar, MA, Khurshid, M, Rasool, MH. Proteomics: technologies and their applications. J Chromatogr Sci. 2017;55(2):182-196.
Google Scholar |
Crossref |
Medline28.
Catherman, AD, Skinner, OS, Kelleher, NL. Top down proteomics: facts and perspectives. Biochem Biophys Res Commun. 2014;445(4):683-693.
Google Scholar |
Crossref |
Medline29.
Yates, JR, Ruse, CI, Nakorchevsky, A. Proteomics by mass spectrometry: approaches, advances, and applications. Annu Rev Biomed Eng. 2009;11:49-79.
Google Scholar |
Crossref |
Medline |
ISI30.
Farias, AS, Pradella, F, Schmitt, A, Santos, LM, Martins-de-Souza, D. Ten years of proteomics in multiple sclerosis. Proteomics. 2014;14(4-5):467-480.
Google Scholar |
Crossref |
Medline31.
Zhang, Y, Fonslow, BR, Shan, B, Baek, M-C, Yates, JR. Protein analysis by shotgun/bottom-up proteomics. Chem Rev. 2013;113(4):2343-2394.
Google Scholar |
Crossref |
Medline |
ISI32.
Lourenço, AS, Baldeiras, I, Grãos, M, Duarte, CB. Proteomics-based technologies in the discovery of biomarkers for multiple sclerosis in the cerebrospinal fluid. Curr Mol Med. 2011;11(4):326-349.
Google Scholar |
Medline33.
Elkabes, S, Li, H. Proteomic strategies in multiple sclerosis and its animal models. Proteomics Clin Appl. 2007;1(11):1393-1405.
Google Scholar |
Crossref |
Medline34.
Stoop, MP, Runia, TF, Stingl, C, van der Vuurst de Vries, RM, Luider, TM, Hintzen, RQ. Decreased neuro-axonal proteins in CSF at first attack of suspected multiple sclerosis. Proteomics Clin Appl. 2017;11(11-12):1700005.
Google Scholar35.
Rosenling, T, Stoop, MP, Attali, A, et al. Profiling and identification of cerebrospinal fluid proteins in a rat EAE model of multiple sclerosis. J Proteome Res. 2012;11(4):2048-2060.
Google Scholar |
Crossref |
Medline36.
Merle, NS, Church, SE, Fremeaux-Bacchi, V, Roumenina, LT. Complement system part I – molecular mechanisms of activation and regulation. Front Immunol. 2015;6:262.
Google Scholar |
Crossref |
Medline37.
Iwanowski, P, Losy, J, Kramer, L, Wójcicka, M, Kaufman, E. CXCL10 and CXCL13 chemokines in patients with relapsing remitting and primary progressive multiple sclerosis. J Neurol Sci. 2017;380:22-26.
Google Scholar |
Crossref |
Medline38.
Chang, K-H, Tseng, M-Y, Ro, L-S, et al. Analyses of haptoglobin level in the cerebrospinal fluid and serum of patients with neuromyelitis optica and multiple sclerosis. Clin Chim Acta. 2013;417:26-30.
Google Scholar |
Crossref |
Medline39.
Cunningham, C. Microglia and neurodegeneration: the role of systemic inflammation. Glia. 2013;61(1):71-90.
Google Scholar |
Crossref |
Medline40.
Barcelos, IPD, Troxell, RM, Graves, JS. Mitochondrial dysfunction and multiple sclerosis. Biology. 2019;8(2):37-53.
Google Scholar |
Crossref41.
Jafari, A, Rezaei-Tavirani, M, Salimi, M, Tavakkol, R, Jafari, Z. Oncological emergencies from pathophysiology and diagnosis to treatment: a narrative review. Soc Work Public Health. 2020;35(8):689-709.
Google Scholar |
Crossref |
Medline42.
Aoki, T, Narumiya, S. Prostaglandins and chronic inflammation. Trends Pharmacol Sci. 2012;33(6):304-311.
Google Scholar |
Medline43.
Dumont, D, Noben, JP, Raus, J, Stinissen, P, Robben, J. Proteomic analysis of cerebrospinal fluid from multiple sclerosis patients. Proteomics. 2004;4(7):2117-2124.
Google Scholar |
Medline44.
Lima, IVDA, Bastos, LFS, Limborço-Filho, M, Fiebich, BL, de Oliveira, ACP. Role of prostaglandins in neuroinflammatory and neurodegenerative diseases. Mediators Inflamm. 2012;2012:946813.
Google Scholar |
Medline45.
Babajani, A, Soltani, P, Jamshidi, E, Farjoo, MH, Niknejad, H. Recent advances on drug-loaded mesenchymal stem cells with anti-neoplastic agents for targeted treatment of cancer. Front Bioeng Biotechnol. 2020;8:748.
Google Scholar |
Crossref |
Medline46.
De Masi, R, Vergara, D, Pasca, S, et al. PBMCs protein expression profile in relapsing IFN-treated multiple sclerosis: a pilot study on relation to clinical findings and brain atrophy. J Neuroimmunol. 2009;210(1-2):80-86.
Google Scholar |
Crossref |
Medline47.
van Noort, JM, Bsibsi, M, Gerritsen, WH, et al. αB-crystallin is a target for adaptive immune responses and a trigger of innate responses in preactive multiple sclerosis lesions. J Neuropathol Exp Neurol. 2010;69(7):694-703.
Google Scholar |
Crossref |
Medline48.
Shin, J-H, Kim, S-W, Lim, C-M, Jeong, J-Y, Piao, C-S, Lee, J-K. αB-crystallin suppresses oxidative stress-induced astrocyte apoptosis by inhibiting caspase-3 activation. Neurosci Res. 2009;64(4):355-361.
Google Scholar |
Medline49.
Li, R, Reiser, G. Phosphorylation of Ser45 and Ser59 of αB-crystallin and p38/extracellular regulated kinase activity determine αB-crystallin-mediated protection of rat brain astrocytes from C2-ceramide-and staurosporine-induced cell death. J Neurochem. 2011;118(3):354-364.
Google Scholar |
Crossref |
Medline50.
Kuipers, HF, Yoon, J, Van Horssen, J, et al. Phosphorylation of αB-crystallin supports reactive astrogliosis in demyelination. Proc Natl Acad Sci. 2017;114(9):E1745-E1754.
Google Scholar |
Crossref |
Medline51.
Thebault, S, Abdoli, M, Fereshtehnejad, S-M, Tessier, D, Tabard-Cossa, V, Freedman, MS. Serum neurofilament light chain predicts long term clinical outcomes in multiple sclerosis. Sci Rep. 2020;10(1):10381.
Google Scholar |
Crossref |
Medline52.
Williams, T, Zetterberg, H, Chataway, J. Neurofilaments in progressive multiple sclerosis: a systematic review. J Neurol. Published online May 23, 2020. doi:
10.1007/s00415-020-09917-x Google Scholar |
Crossref53.
Gil-Perotin, S, Castillo-Villalba, J, Cubas-Nuñez, L, et al. Combined cerebrospinal fluid neurofilament light chain protein and chitinase-3 like-1 levels in defining disease course and prognosis in multiple sclerosis. Front Neurol. 2019;10:1008-1018.
Google Scholar |
Medline54.
Varhaug, KN, Torkildsen, Ø, Myhr, K-M, Vedeler, CA. Neurofilament light chain as a biomarker in multiple sclerosis. Front Neurol. 2019;10:338-343.
留言 (0)