1.
Williams, RE, Hirch, A, Cowan, ST. Aerococcus, a new bacterial genus. J Gen Microbiol. 1953;8:475-480.
Google Scholar |
Crossref |
Medline2.
Rasmussen, M. Aerococcus: an increasingly acknowledged human pathogen. Clin Microbiol Infect. 2016;22:22-27.
Google Scholar |
Crossref |
Medline |
ISI3.
Senneby, E, Petersson, AC, Rasmussen, M. Clinical and microbiological features of bacteraemia with Aerococcus urinae. Clin Microbiol Infect. 2012;18:546-550.
Google Scholar |
Crossref4.
Shannon, O, Morgelin, M, Rasmussen, M. Platelet activation and biofilm formation by Aerococcus urinae, an endocarditis-causing pathogen. Infect Immun. 2010;78:4268-4275.
Google Scholar |
Crossref |
Medline |
ISI5.
Sturm, PD, Van Eijk, J, Veltman, S, Meuleman, E, Schulin, T. Urosepsis with Actinobaculum schaalii and Aerococcus urinae. J Clin Microbiol. 2006;44:652-654.
Google Scholar |
Crossref6.
Zhang, Q, Kwoh, C, Attorri, S, Clarridge, JE. Aerococcus urinae in urinary tract infections. J Clin Microbiol. 2000;38:1703-1705.
Google Scholar |
Crossref |
Medline |
ISI7.
Colman, G. Transformation of viridans-like streptococci. J Gen Microbiol. 1969;57:247-255.
Google Scholar |
Crossref |
Medline8.
Mohan, B, Zaman, K, Anand, N, Taneja, N. Aerococcus viridans: a rare pathogen causing urinary tract infection. J Clin Diagn Res. 2017;11:DR01-DR03.
Google Scholar9.
European Nucleotide Archive . Aerococcus urinae ACS-120-V-Col10a genome dataset.
www.ebi.ac.uk/ena/data/view/GCA_000193205.1 Google Scholar10.
Carkaci, D, Dargis, R, Nielsen, XC, Skovgaard, O, Fuursted, K, Christensen, JJ. Complete genome sequences of Aerococcus christensenii CCUG 28831T, Aerococcus sanguinicola CCUG 43001T, Aerococcus urinae CCUG 36881T, Aerococcus urinaeequi CCUG 28094T, Aerococcus urinaehominis CCUG 42038 BT, and Aerococcus viridans CCUG 4311T. Genome Announc. 2016;4:e00302-16.
Google Scholar |
Crossref11.
Carkaci, D, Hojholt, K, Nielsen, XC, et al. Genomic characterization, phylogenetic analysis, and identification of virulence factors in Aerococcus sanguinicola and Aerococcus urinae strains isolated from infection episodes. Microb Pathog. 2017;112:327-340.
Google Scholar |
Crossref12.
Collins, MD, Aguirre, M, Facklam, RR, Shallcross, J, Williams, AM. Globicatella sanguis gen.nov., sp.nov., a new gram-positive catalase-negative bacterium from human sources. J Appl Bacteriol. 1992;73:433-437.
Google Scholar |
Crossref13.
Seegmuller, I, van der Linden, M, Heeg, C, Reinert, RR. Globicatella sanguinis is an etiological agent of ventriculoperitoneal shunt-associated meningitis. J Clin Microbiol. 2007;45:666-667.
Google Scholar |
Crossref14.
Miller, AO, Buckwalter, SP, Henry, MW, et al. Globicatella sanguinis Osteomyelitis and Bacteremia: review of an emerging human pathogen with an expanding spectrum of disease. Open Forum Infect Dis. 2017;4:ofw277.
Google Scholar |
Crossref15.
Hery-Arnaud, G, Doloy, A, Ansart, S, et al. Globicatella sanguinis meningitis associated with human carriage. J Clin Microbiol. 2010;48:1491-1493.
Google Scholar |
Crossref16.
Ruoff, KL. Miscellaneous catalase-negative, gram-positive cocci: emerging opportunists. J Clin Microbiol. 2002;40:1129-1133.
Google Scholar |
Crossref |
Medline |
ISI17.
Narayanasamy, S, King, K, Dennison, A, Spelman, DW, Aung, AK. Clinical characteristics and laboratory identification of Aerococcus infections: an Australian tertiary centre perspective. Int J Microbiol. 2017;2017:5684614.
Google Scholar |
Crossref18.
Yu, Y, Tsitrin, T, Singh, H, et al. Actinobaculum massiliense proteome profiled in polymicrobial urethral catheter biofilms. Proteomes. 2018;6:52.
Google Scholar |
Crossref19.
Takahashi, S, Xu, C, Sakai, T, Fujii, K, Nakamura, M. Infective endocarditis following urinary tract infection caused by Globicatella sanguinis. IDCases. 2018;11:18-21.
Google Scholar |
Crossref20.
Yu, Y, Zielinski, M, Rolfe, M, et al. Similar neutrophil-driven inflammatory and antibacterial responses in elderly patients with symptomatic and Asymptomatic bacteriuria. Infect Immun. 2015;82:4142-4153.
Google Scholar |
Crossref21.
Yu, Y, Suh, MJ, Sikorski, P, Kwon, K, Nelson, KE, Pieper, R. Urine sample preparation in 96-well filter plates for quantitative clinical proteomics. Anal Chem. 2014;86:5470-5477.
Google Scholar |
Crossref22.
Yu, Y, Smith, M, Pieper, R. A spinnable and automatable StageTip for high throughput peptide desalting and proteomics [published online ahead of print 8 September 2014]. Protocol Exchange. doi:
10.1038/protex.2014.1033.
Google Scholar |
Crossref23.
Suh, MJ, Tovchigrechko, A, Thovarai, V, et al. Quantitative differences in the urinary proteome of siblings discordant for type 1 diabetes include lysosomal enzymes. J Proteome Res. 2015;14:3123-3135.
Google Scholar |
Crossref24.
Yu, Y, Sikorski, P, Bowman-Gholston, C, Cacciabeve, N, Nelson, KE, Pieper, R. Diagnosing inflammation and infection in the urinary system via proteomics. J Transl Med. 2015;13:111.
Google Scholar |
Crossref25.
Huang, Y, Niu, B, Gao, Y, Fu, L, Li, W. CD-HIT Suite: a web server for clustering and comparing biological sequences. Bioinformatics. 2010;26:680-682.
Google Scholar |
Crossref |
Medline |
ISI26.
Bouatra, S, Aziat, F, Mandal, R, et al. The human urine metabolome. PLoS ONE. 2013;8:e73076.
Google Scholar |
Crossref |
Medline |
ISI27.
Cortese, YJ, Wagner, VE, Tierney, M, Devine, D, Fogarty, A. Review of catheter-associated urinary tract infections and in vitro urinary tract models. J Healthc Eng. 2018;2018:2986742.
Google Scholar |
Crossref |
Medline28.
Janulczyk, R, Ricci, S, Bjorck, L. MtsABC is important for manganese and iron transport, oxidative stress resistance, and virulence of Streptococcus pyogenes. Infect Immun. 2003;71:2656-2664.
Google Scholar |
Crossref29.
Low, YL, Jakubovics, NS, Flatman, JC, Jenkinson, HF, Smith, AW. Manganese-dependent regulation of the endocarditis-associated virulence factor EfaA of Enterococcus faecalis. J Med Microbiol. 2003;52:113-119.
Google Scholar |
Crossref30.
Colomer-Winter, C, Flores-Mireles, AL, Baker, SP, et al. Manganese acquisition is essential for virulence of Enterococcus faecalis. PLoS Pathog. 2018;14:e1007102.
Google Scholar |
Crossref31.
Spry, C, Kirk, K, Saliba, KJ. Coenzyme A biosynthesis: an antimicrobial drug target. FEMS Microbiol Rev. 2008;32:56-106.
Google Scholar |
Crossref |
Medline |
ISI32.
Esko, JD, Kimata, K, Lindahl, U. Proteoglycans and sulfated glycosaminoglycans. In: Varki, A, Cummings, RD, Esko, J, Freeze, H, Hart, G, Marth, J, eds. Essentials of Glycobiology. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2009.
Google Scholar33.
Kawada-Matsuo, M, Mazda, Y, Oogai, Y, et al. GlmS and NagB regulate amino sugar metabolism in opposing directions and affect Streptococcus mutans virulence. PLoS ONE. 2012;7:e33382.
Google Scholar |
Crossref34.
Meile, L, Rohr, LM, Geissmann, TA, Herensperger, M, Teuber, M. Characterization of the D-xylulose 5-phosphate/D-fructose 6-phosphate phosphoketolase gene (xfp) from Bifidobacterium lactis. J Bacteriol. 2001;183:2929-2936.
Google Scholar |
Crossref35.
Hugenholtz, J, Perdon, L, Abee, T. Growth and energy generation by Lactococcus lactis subsp. Appl Environ Microbiol. 1993;59:4216-4222.
Google Scholar |
Crossref36.
Sarantinopoulos, P, Kalantzopoulos, G, Tsakalidou, E. Citrate metabolism by Enterococcus faecalis FAIR-E 229. Appl Environ Microbiol. 2001;67:5482-5487.
Google Scholar |
Crossref37.
Goldberg, H, Grass, L, Vogl, R, Rapoport, A, Oreopoulos, DG. Urine citrate and renal stone disease. CMAJ. 1989;141:217-221.
Google Scholar38.
Jacobsen, SM, Stickler, DJ, Mobley, HL, Shirtliff, ME. Complicated catheter-associated urinary tract infections due to Escherichia coli and Proteus mirabilis. Clin Microbiol Rev. 2008;21:26-59.
Google Scholar |
Crossref |
Medline |
ISI39.
Abbott, DW, Higgins, MA, Hyrnuik, S, Pluvinage, B, Lammerts van Bueren, A, Boraston, AB. The molecular basis of glycogen breakdown and transport in Streptococcus pneumoniae. Mol Microbiol. 2010;77:183-199.
Google Scholar |
Crossref40.
Flores-Mireles, AL, Walker, JN, Caparon, M, Hultgren, SJ. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol. 2015;13:269-284.
Google Scholar |
Crossref |
Medline41.
Foxman, B. The epidemiology of urinary tract infection. Nat Rev Urol. 2010;7:653-660.
Google Scholar |
Crossref |
Medline |
ISI42.
Ramsey, M, Hartke, A, Huycke, M. The physiology and metabolism of Enterococci. In: Gilmore, MS, Clewell, DB, Ike, Y, Shankar, N, eds. Enterococci: From Commensals to Leading Causes of Drug Resistant Infection. Boston, MA: Massachusetts Eye and Ear Infirmary; 2014.
Google Scholar43.
La Carbona, S, Sauvageot, N, Giard, JC, et al. Comparative study of the physiological roles of three peroxidases (NADH peroxidase, Alkyl hydroperoxide reductase and thiol peroxidase) in oxidative stress response, survival inside macrophages and virulence of Enterococcus faecalis. Mol Microbiol. 2007;66:1148-1163.
Google Scholar |
Crossref44.
Yamamoto, Y, Pargade, V, Lamberet, G, et al. The Group B Streptococcus NADH oxidase Nox-2 is involved in fatty acid biosynthesis during aerobic growth and contributes to virulence. Mol Microbiol. 2006;62:772-785.
Google Scholar |
Crossref45.
Toledo-Arana, A, Valle, J, Solano, C, et al. The enterococcal surface protein, Esp, is involved in Enterococcus faecalis biofilm formation. Appl Environ Microbiol. 2001;67:4538-4545.
Google Scholar |
Crossref |
Medline |
ISI46.
Xu, W, Flores-Mireles, AL, Cusumano, ZT, Takagi, E, Hultgren, SJ, Caparon, MG. Host and bacterial proteases influence biofilm formation and virulence in a murine model of enterococcal catheter-associated urinary tract infection. NPJ Biofilms Microbiomes. 2017;3:28.
Google Scholar |
Crossref
留言 (0)