A computational model of contributors to pulmonary hypertensive disease: impacts of whole lung and focal disease distributions

1. Hoeper, MM, Humbert, M. The new haemodynamic definition of pulmonary hypertension: evidence prevails, finally! Eur Resp J 2019; 53: 1900038.
Google Scholar | Crossref | Medline2. Hunter, KS, Lee, P-F, Lanning, CJ, et al. Pulmonary vascular input impedance is a combined measure of pulmonary vascular resistance and stiffness and predicts clinical outcomes better than pulmonary vascular resistance alone in pediatric patients with pulmonary hypertension. Am Heart J 2008; 155: 166–174.
Google Scholar | Crossref | Medline | ISI3. Huez, S, Brimioulle, S, Naeije, R, et al. Feasibility of routine pulmonary arterial impedance measurements in pulmonary hypertension. Chest 2004; 125: 2121–2128.
Google Scholar | Crossref | Medline | ISI4. Chemla, D, Castelain, V, Herve, P, et al. Haemodynamic evaluation of pulmonary hypertension. Eur Resp J 2002; 20: 1314–1331.
Google Scholar | Crossref | Medline | ISI5. Castelain, V, Hervé, P, Lecarpentier, Y, et al. Pulmonary artery pulse pressure and wave reflection in chronic pulmonary thromboembolism and primary pulmonary hypertension. J Am Coll Cardiol 2001; 37: 1085–1092.
Google Scholar | Crossref | Medline | ISI6. Su, J, Manisty, C, Parker, KH, et al. Wave intensity analysis provides novel insights into pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension. J Am Heart Assoc 2017; 6: e006679.
Google Scholar | Crossref | Medline7. Quail, MA, Knight, DS, Steeden, JA, et al. Noninvasive pulmonary artery wave intensity analysis in pulmonary hypertension. Am J Physiol Heart Circu Physiol 2015; 308: H1603–H1611.
Google Scholar | Crossref | Medline8. Frost, A, Badesch, D, Gibbs, JSR, et al. Diagnosis of pulmonary hypertension. Eur Resp J 2019; 53: 1801904.
Google Scholar | Crossref | Medline9. Kim, NH, Delcroix, M, Jenkins, DP, et al. Chronic thromboembolic pulmonary hypertension. J Am Coll Cardiol 2013; 62: D92–D99.
Google Scholar | Crossref | Medline | ISI10. Gude, MJL, de la Sota, EP, Gil, AF, et al. Pulmonary thromboendarterectomy in 106 patients with chronic thromboembolic pulmonary hypertension. Archivos de Bronconeumología (English Edition) 2015; 51: 502–508.
Google Scholar | Crossref | Medline11. Simonneau, G, Torbicki, A, Dorfmüller, P, et al. The pathophysiology of chronic thromboembolic pulmonary hypertension. Eur Resp Rev 2017; 26: 160112.
Google Scholar12. Pepke-Zaba, J, Jansa, P, Kim, NH, et al. Chronic thromboembolic pulmonary hypertension: role of medical therapy. Eur Resp J 2013; 41: 985–990.
Google Scholar | Crossref | Medline13. Su, J, Hughes, AD, Simonsen, U, et al. Impact of pulmonary endarterectomy on pulmonary arterial wave propagation and reservoir function. Am J Physiol Heart Circ Physiol 2019; 317: H505–H516.
Google Scholar | Crossref | Medline14. Gerges, C, Gerges, M, Friewald, R, et al. Microvascular disease in chronic thromboembolic pulmonary hypertension: hemodynamic phenotyping and histomorphometric assessment. Circulation 2020; 141: 376–386.
Google Scholar | Crossref | Medline15. Kiely, DG, Levin, DL, Hassoun, PM, et al. Statement on imaging and pulmonary hypertension from the Pulmonary Vascular Research Institute (PVRI). Pulm Circ 2019; 9: 2045894019841990.
Google Scholar | SAGE Journals | ISI16. Tawhai, MH, Clark, AR, Burrowes, KS. Computational models of the pulmonary circulation: insights and the move towards clinically directed studies. Pulm Circ 2011; 1: 224–238.
Google Scholar | SAGE Journals17. Kheyfets, VO, Rios, L, Smith, T, et al. Patient-specific computational modeling of blood flow in the pulmonary arterial circulation. Comput Meth Program Biomed 2015; 120: 88–101.
Google Scholar | Crossref | Medline | ISI18. Clark, AR, Tawhai, MH, Hoffman, EA, et al. The interdependent contributions of gravitational and structural features to perfusion distribution in a multiscale model of the pulmonary circulation. J Appl Physiol 2011; 110: 943–955.
Google Scholar | Crossref | Medline | ISI19. Qureshi, MU, Vaughan, GD, Sainsbury, C, et al. Numerical simulation of blood flow and pressure drop in the pulmonary arterial and venous circulation. Biomech Model Mechanobiol 2014; 13: 1137–1154.
Google Scholar | Crossref | Medline | ISI20. Acosta, S, Puelz, C, Rivière, B, et al. Cardiovascular mechanics in the early stages of pulmonary hypertension: a computational study. Biomech Model Mechanobiol 2017; 16: 2093–2112.
Google Scholar | Crossref | Medline21. Wang, Z, Chesler, NC. Pulmonary vascular wall stiffness: an important contributor to the increased right ventricular afterload with pulmonary hypertension. Pulm Circ 2011; 1: 212–223.
Google Scholar | SAGE Journals22. Heath, D, Edwards, JE. The pathology of hypertensive pulmonary vascular disease: a description of six grades of structural changes in the pulmonary arteries with special reference to congenital cardiac septal defects. Circulation 1958; 18: 533–547.
Google Scholar | Crossref | Medline | ISI23. Colebank, MJ, Qureshi, MU, Rajagopal, S, et al. A multiscale model of vascular function in chronic thromboembolic pulmonary hypertension. Am J Physiol Heart Circ Physiol 2021; 321: H318–H338.
Google Scholar | Crossref | Medline24. Qureshi, MU, Hill, NA. A computational study of pressure wave reflections in the pulmonary arteries. J Math Biol 2015; 71: 1525–1549.
Google Scholar | Crossref | Medline25. Clark, AR, Tawhai, M. Temporal and spatial heterogeneity in pulmonary perfusion: a mathematical model to predict interactions between macro-and micro-vessels in health and disease. ANZIAM J 2018; 59: 562–580.
Google Scholar | Crossref26. Burrowes, KS, Hunter, PJ, Tawhai, MH. Anatomically based finite element models of the human pulmonary arterial and venous trees including supernumerary vessels. J Appl Physiol 2005; 99: 731–738.
Google Scholar | Crossref | Medline | ISI27. Hoffman, EA, Reinhardt, JM, Sonka, M, et al. Characterization of the interstitial lung diseases via density-based and texture-based analysis of computed tomography images of lung structure and function1. Acad Radiol 2003; 10: 1104–1118.
Google Scholar | Crossref | Medline | ISI28. Osanlouy, M, Clark, AR, Kumar, H, et al. Lung and fissure shape is associated with age in healthy never-smoking adults aged 20–90 years. Scientif Rep 2020; 10: 1–13.
Google Scholar | Medline29. Haefeli-Bleuer, B, Weibel, ER. Morphometry of the human pulmonary acinus. Anat Rec 1988; 220: 401–414.
Google Scholar | Crossref | Medline30. Fung, Y, Sobin, S. Theory of sheet flow in lung alveoli. J Appl Physiol 1969; 26: 472–488.
Google Scholar | Crossref | Medline | ISI31. Fung, Y, Sobin, S. Elasticity of the pulmonary alveolar sheet. Circ Res 1972; 30: 451–469.
Google Scholar | Crossref | Medline | ISI32. Fung, Y-C. Theoretical pulmonary microvascular impedance. Ann Biomed Eng 1972; 1: 221–245.
Google Scholar | Crossref | Medline33. Duan, B, Zamir, M. Viscous damping in one‐dimensional wave transmission. J Acoust Soc Am 1992; 92: 3358–3363.
Google Scholar | Crossref34. Zhou, Q, Gao, J, Huang, W, et al. Vascular impedance analysis in human pulmonary circulation. Proceedings of IMECE ASME International Mechanical Engineering Congress and Exposition, IMECE, 2002, pp.433–434.
Google Scholar35. Zhuang, F, Fung, Y, Yen, R. Analysis of blood flow in cat's lung with detailed anatomical and elasticity data. J Appl Physiol 1983; 55: 1341–1348.
Google Scholar | Crossref | Medline | ISI36. Clark, A, Burrowes, K, Tawhai, M. The impact of micro-embolism size on haemodynamic changes in the pulmonary micro-circulation. Resp Physiol Neurobiol 2011; 175: 365–374.
Google Scholar | Crossref | Medline | ISI37. Yen, R, Fung, Y, Bingham, N. Elasticity of small pulmonary arteries in the cat. J Biomech Eng 1980; 102: 170–177.
Google Scholar38. Clark, A, Milne, D, Wilsher, M, et al. Lack of functional information explains the poor performance of ‘clot load scores’ at predicting outcome in acute pulmonary embolism. Resp Physiol Neurobiol 2014; 190: 1–13.
Google Scholar | Crossref | Medline | ISI39. Postles, A, Clark, AR, Tawhai, MH. Dynamic blood flow and wall shear stress in pulmonary hypertensive disease. In: 2014 36th annual international conference of the IEEE engineering in medicine and biology society, 2014, pp.5671–5674. Piscataway, NJ: IEEE.
Google Scholar40. Moser, KM, Bioor, CM. Pulmonary vascular lesions occurring in patients with chronic major vessel thromboembolic pulmonary hypertension. Chest 1993; 103: 685–692.
Google Scholar | Crossref | Medline | ISI41. Krenz, GS, Dawson, CA. Flow and pressure distributions in vascular networks consisting of distensible vessels. Am J Physiol Heart Circ Physiol 2003; 284: H2192–H2203.
Google Scholar | Crossref | Medline | ISI42. Fung YC, Microcirculation. In: Biodynamics-Circulation. Springer, Verlag, New York, 1984, pp. 224–285.
Google Scholar43. Pries, A, Secomb, TW, Gaehtgens, P. Biophysical aspects of blood flow in the microvasculature. Cardiovasc Res 1996; 32: 654–667.
Google Scholar | Crossref | Medline | ISI44. Burrowes, K, Clark, A, Marcinkowski, A, et al. Pulmonary embolism: predicting disease severity. Philos Trans R Soc A 2011; 369: 4255–4277.
Google Scholar | Crossref | Medline45. Burrowes, K, Clark, A, Tawhai, M. Blood flow redistribution and ventilation-perfusion mismatch during embolic pulmonary arterial occlusion. Pulm Circ 2011; 1: 365–376.
Google Scholar | SAGE Journals46. Burrowes, K, Clark, A, Wilsher, M, et al. Hypoxic pulmonary vasoconstriction as a contributor to response in acute pulmonary embolism. Ann Biomed Eng 2014; 42: 1631–1643.
Google Scholar | Crossref | Medline | ISI47. Pepke-Zaba, J, Delcroix, M, Lang, I, et al. Chronic thromboembolic pulmonary hypertension (CTEPH) results from an international prospective registry. Circulation 2011; 124: 1973–1981.
Google Scholar | Crossref | Medline | ISI48. Piene, H. Pulmonary arterial impedance and right ventricular function. Physiol Rev 1986; 66: 606–652.
Google Scholar | Crossref | Medline | ISI49. Haneda, T, Nakajima, T, Shirato, K, et al. Effects of oxygen breathing on pulmonary vascular input impedance in patients with pulmonary hypertension. Chest 1983; 83: 520–527.
Google Scholar | Crossref | Medline | ISI50. Kussmaul, WG, Wieland, JM, Laskey, WK. Pressure-flow relations in the pulmonary artery during myocardial ischaemia: implications for right ventricular function in coronary disease. Cardiovasc Res 1988; 22: 627–638.

留言 (0)

沒有登入
gif