Verhey JT, Haglin JM, Verhey EM, Hartigan DE. Virtual, augmented, and mixed reality applications in orthopedic surgery. Int J Med Robot Comput Assist Surg. 2020;16:e2067. https://doi.org/10.1002/rcs.2067.
2.Chong Y, Sethi DK, Loh CHY, Lateef F. Going forward with Pokemon Go. J Emerg Trauma Shock. 2018;11:243–6.
3.• Xu B, Yang Z, Jiang S, Zhou Z, Jiang B, Yin S. Design and validation of a spinal surgical navigation system based on spatial augmented reality. Spine (Phila Pa 1976). 2020;45:E1627–e33. Demonstrates the fesibility and pre-clinical accuracy of utilizing a projection based AR system for pedicle screw placement. Also highlights the difficulties of translating such projection based technologies and methods to the clinical setting
4.Ma L, Zhao Z, Zhang B, Jiang W, Fu L, Zhang X, Liao H. Three-dimensional augmented reality surgical navigation with hybrid optical and electromagnetic tracking for distal intramedullary nail interlocking. Int J Med Robot Comput Assist Surg. 2018;14:e1909. https://doi.org/10.1002/rcs.1909.
5.Ma L, Zhao Z, Chen F, Zhang B, Fu L, Liao H. Augmented reality surgical navigation with ultrasound-assisted registration for pedicle screw placement: a pilot study. Int J Comput Assist Radiol Surg. 2017;12:2205–15. https://doi.org/10.1007/s11548-017-1652-z.
6.Wu J-R, Wang M-L, Liu K-C, Hu M-H, Lee P-Y. Real-time advanced spinal surgery via visible patient model and augmented reality system. Comput Methods Prog Biomed. 2014;113:869–81. https://doi.org/10.1016/j.cmpb.2013.12.021.
7.Gavaghan K, Oliveira-Santos T, Peterhans M, Reyes M, Kim H, Anderegg S, Weber S. Evaluation of a portable image overlay projector for the visualisation of surgical navigation data: phantom studies. Int J Comput Assist Radiol Surg. 2012;7:547–56. https://doi.org/10.1007/s11548-011-0660-7.
CAS Article PubMed Google Scholar
8.Nguyen NQ, Priola SM, Ramjist JM, Guha D, Dobashi Y, Lee K, Lu M, Androutsos D, Yang V. Machine vision augmented reality for pedicle screw insertion during spine surgery. J Clin Neurosci. 2020;72:350–6.
9.•• Elmi-Terander A, Burström G, Nachabé R, et al. Augmented reality navigation with intraoperative 3D imaging vs fluoroscopy-assisted free-hand surgery for spine fixation surgery: a matched-control study comparing accuracy. Sci Rep. 2020;10:707. First study comparing the clinical accuracy of pedical screw placement with Augmented Reality Surgical Navigation (ARSN) and free-hand (FH) techniques. This matched-control study demonstrated that ARSN provided higher screw placement accuracy than the FH approach
10.•• Edström E, Burström G, Persson O, et al. Does Augmented reality navigation increase pedicle screw density compared to free-hand technique in deformity surgery? Single Surgeon Case Series of 44 Patients. Spine (Phila Pa 1976). 2020;45:E1085–e90. Study suggest that ARSN will allow surgeons to increase their pedicle screw density in deformity cases when compared to FH approaches. This suggests that surgeons can use ARSN to place better constructs in deformity cases potentially lowering the need for revision surguries
11.• Edström E, Burström G, Omar A, et al. Augmented reality surgical navigation in spine surgery to minimize staff radiation exposure. Spine (Phila Pa 1976). 2020;45:E45–e53. Demonstrates the ability of AR technologies to lower occupational radiation exposure
12.Burström G, Nachabe R, Homan R, Hoppenbrouwers J, Holthuizen R, Persson O, Edström E, Elmi-Terander A. Frameless patient tracking with adhesive optical skin markers for augmented reality surgical navigation in spine surgery. Spine (Phila Pa 1976). 2020;45:1598–604.
13.Alexander C, Loeb AE, Fotouhi J, Navab N, Armand M, Khanuja HS. Augmented reality for acetabular component placement in direct anterior total hip arthroplasty. J Arthroplast. 2020;35:1636–41.e3.
14.• Weidert S, Wang L, Landes J, et al. Video-augmented fluoroscopy for distal interlocking of intramedullary nails decreased radiation exposure and surgical time in a bovine cadaveric setting. Int J Med Robot Comput Assist Surg. 2019;15:e1995. https://doi.org/10.1002/rcs.1995. Highlights the impact of surgical training level on an AR system's efficacy. The AR system only reduced radiation exposure when utilized by less experienced surgeons
15.Elmi-Terander A, Burström G, Nachabe R, Skulason H, Pedersen K, Fagerlund M, Ståhl F, Charalampidis A, Söderman M, Holmin S, Babic D, Jenniskens I, Edström E, Gerdhem P. Pedicle screw placement using augmented reality surgical navigation with intraoperative 3D imaging. Spine (Phila Pa 1976). 2019;44:517–25. https://doi.org/10.1097/brs.0000000000002876.
16.Cho HS, Park MS, Gupta S, Han I, Kim HS, Choi H, Hong J. Can augmented reality be helpful in pelvic bone cancer surgery? An in vitro study. Clin Orthop Relat Res. 2018;476:1719–25. https://doi.org/10.1007/s11999.0000000000000233.
Article PubMed PubMed Central Google Scholar
17.Fischer M, Fuerst B, Lee SC, Fotouhi J, Habert S, Weidert S, Euler E, Osgood G, Navab N. Preclinical usability study of multiple augmented reality concepts for K-wire placement. Int J Comput Assist Radiol Surg. 2016;11:1007–14. https://doi.org/10.1007/s11548-016-1363-x.
18.Fallavollita P, Brand A, Wang L, Euler E, Thaller P, Navab N, Weidert S. An augmented reality C-arm for intraoperative assessment of the mechanical axis: a preclinical study. Int J Comput Assist Radiol Surg. 2016;11:2111–7. https://doi.org/10.1007/s11548-016-1426-z.
19.Londei R, Esposito M, Diotte B, Weidert S, Euler E, Thaller P, Navab N, Fallavollita P. Intra-operative augmented reality in distal locking. Int J Comput Assist Radiol Surg. 2015;10:1395–403. https://doi.org/10.1007/s11548-015-1169-2.
20.Ponce BA, Jennings JK, Clay TB, May MB, Huisingh C, Sheppard ED. Telementoring: use of augmented reality in orthopaedic education: AAOS exhibit selection. J Bone Joint Surg Am. 2014;96:e84.
21.U-Thainual P, Fritz J, Moonjaita C, Ungi T, Flammang A, Carrino JA, Fichtinger G, Iordachita I. MR image overlay guidance: system evaluation for preclinical use. Int J Comput Assist Radiol Surg. 2013;8:365–78. https://doi.org/10.1007/s11548-012-0788-0.
22.Shen F, Chen B, Guo Q, Qi Y, Shen Y. Augmented reality patient-specific reconstruction plate design for pelvic and acetabular fracture surgery. Int J Comput Assist Radiol Surg. 2013;8:169–79. https://doi.org/10.1007/s11548-012-0775-5.
23.Yeo CT, Ungi T, U-Thainual P, Lasso A, McGraw RC, Fichtinger G. The effect of augmented reality training on percutaneous needle placement in spinal facet joint injections. IEEE Trans Biomed Eng. 2011;58:2031–7. https://doi.org/10.1109/tbme.2011.2132131.
24.Navab N, Heining S-M, Traub J. Camera augmented mobile C-arm (CAMC): Calibration, accuracy study, and clinical applications. IEEE Trans Med Imaging. 2010;29:1412–23. https://doi.org/10.1109/tmi.2009.2021947.
25.Fischer GS, Deguet A, Csoma C, Taylor RH, Fayad L, Carrino JA, Zinreich SJ, Fichtinger G. MRI image overlay: application to arthrography needle insertion. Comput Aided Surg. 2007;12:2–14. https://doi.org/10.3109/10929080601169930.
26.Fichtinger G, Deguet A, Masamune K, Balogh E, Fischer GS, Mathieu H, Taylor RH, Zinreich SJ, Fayad LM. Image overlay guidance for needle insertion in CT scanner. IEEE Trans Biomed Eng. 2005;52:1415–24. https://doi.org/10.1109/tbme.2005.851493.
27.Dibble CF, Molina CA. Device profile of the XVision-spine (XVS) augmented-reality surgical navigation system: overview of its safety and efficacy. Expert Rev Med Devices. 2021;18:1–8.
28.Urakov TM. Augmented reality-assisted pedicle instrumentation: versatility across major instrumentation sets. Spine (Phila Pa 1976). 2020;45:E1622–e6.
29.• Dennler C, Jaberg L, Spirig J, et al. Augmented reality-based navigation increases precision of pedicle screw insertion. J Orthop Surg Res. 2020;15:174. Study shows that the impact and efficacy of AR technologies are conditional on the operator's level of surgical training
30.Urakov TM, Wang MY, Levi AD. Workflow caveats in augmented reality-assisted pedicle instrumentation: Cadaver lab. World Neurosurg. 2019;126:e1449–e55.
31.Gibby JT, Swenson SA, Cvetko S, Rao R, Javan R. Head-mounted display augmented reality to guide pedicle screw placement utilizing computed tomography. Int J Comput Assist Radiol Surg. 2019;14:525–35. https://doi.org/10.1007/s11548-018-1814-7.
32.Liu H, Auvinet E, Giles J, Rodriguez Y, Baena F. Augmented reality based navigation for computer assisted hip resurfacing: a proof of concept study. Ann Biomed Eng. 2018;46:1595–605. https://doi.org/10.1007/s10439-018-2055-1.
CAS Article PubMed PubMed Central Google Scholar
33.Hiranaka T, Fujishiro T, Hida Y, Shibata Y, Tsubosaka M, Nakanishi Y, Okimura K, Uemoto H. Augmented reality: the use of the PicoLinker smart glasses improves wire insertion under fluoroscopy. World J Orthop. 2017;8:891–4. https://doi.org/10.5312/wjo.v8.i12.891.
Article PubMed PubMed Central Google Scholar
34.Lungu AJ, Swinkels W, Claesen L, Tu P, Egger J, Chen X. A review on the applications of virtual reality, augmented reality and mixed reality in surgical simulation: an extension to different kinds of surgery. Expert Rev Med Devices. 2021;18:47–62.
35.Keating TC, Jacobs JJ. Augmented reality in orthopedic practice and education. Orthop Clin North Am. 2021;52:15–26.
36.Park BJ, Hunt SJ, Martin C 3rd, Nadolski GJ, Wood BJ, Gade TP. Augmented and mixed reality: technologies for enhancing the future of IR. J Vasc Interv Radiol. 2020;31:1074–82.
37.Nguyen NQ, Cardinell J, Ramjist JM, Lai P, Dobashi Y, Guha D, Androutsos D, Yang VXD. An augmented reality system characterization of placement accuracy in neurosurgery. J Clin Neurosci. 2020;72:392–6.
38.Vávra P, Roman J, Zonča P, Ihnát P, Němec M, Kumar J, Habib N, el-Gendi A. Recent development of augmented reality in surgery: a review. J Healthc Eng. 2017;2017:4574172–9.
39.Bradley MP, Benson JR, Muir JM. Accuracy of acetabular component positioning using computer-assisted navigation in direct anterior total hip arthroplasty. Cureus. 2019;11:e4478.
PubMed PubMed Central Google Scholar
40.Sadrameli SS, Jafrani R, Staub BN, Radaideh M, Holman PJ. Minimally invasive, stereotactic, wireless, percutaneous pedicle screw placement in the lumbar spine: accuracy rates with 182 consecutive screws. Int J Spine Surg. 2018;12:650–8. https://doi.org/10.14444/5081.
Article PubMed PubMed Central Google Scholar
41.Van Duren BH, Sugand K, Wescott R, Carrington R, Hart A. Augmented reality fluoroscopy simulation of the guide-wire insertion in DHS surgery: a proof of concept study. Med Eng Phys. 2018;55:52–9. https://doi.org/10.1016/j.medengphy.2018.02.007.
42.Andress S, Johnson A, Unberath M, Winkler AF, Yu K, Fotouhi J, Weidert S, Osgood G, Navab N. On-the-fly augmented reality for orthopedic surgery using a multimodal fiducial. J Med Imaging (Bellingham). 2018;5(2):021209. https://doi.org/10.1117/1.jmi.5.2.021209.full.
43.Fotouhi J, Alexander CP, Unberath M, Taylor G, Lee SC, Fuerst B, Johnson A, Osgood GM, Taylor RH, Khanuja H, Armand M, Navab N. Plan in 2-D, execute in 3-D: an augmented reality solution for cup placement in total hip arthroplasty. J Medical Imaging. 2018;5(2):021205. https://doi.org/10.1117/1.jmi.5.2.021205.full.
留言 (0)