Augmented Reality (AR) in Orthopedics: Current Applications and Future Directions

1.

Verhey JT, Haglin JM, Verhey EM, Hartigan DE. Virtual, augmented, and mixed reality applications in orthopedic surgery. Int J Med Robot Comput Assist Surg. 2020;16:e2067. https://doi.org/10.1002/rcs.2067.

Article  Google Scholar 

2.

Chong Y, Sethi DK, Loh CHY, Lateef F. Going forward with Pokemon Go. J Emerg Trauma Shock. 2018;11:243–6.

Article  Google Scholar 

3.

• Xu B, Yang Z, Jiang S, Zhou Z, Jiang B, Yin S. Design and validation of a spinal surgical navigation system based on spatial augmented reality. Spine (Phila Pa 1976). 2020;45:E1627–e33. Demonstrates the fesibility and pre-clinical accuracy of utilizing a projection based AR system for pedicle screw placement. Also highlights the difficulties of translating such projection based technologies and methods to the clinical setting

Article  Google Scholar 

4.

Ma L, Zhao Z, Zhang B, Jiang W, Fu L, Zhang X, Liao H. Three-dimensional augmented reality surgical navigation with hybrid optical and electromagnetic tracking for distal intramedullary nail interlocking. Int J Med Robot Comput Assist Surg. 2018;14:e1909. https://doi.org/10.1002/rcs.1909.

Article  Google Scholar 

5.

Ma L, Zhao Z, Chen F, Zhang B, Fu L, Liao H. Augmented reality surgical navigation with ultrasound-assisted registration for pedicle screw placement: a pilot study. Int J Comput Assist Radiol Surg. 2017;12:2205–15. https://doi.org/10.1007/s11548-017-1652-z.

Article  PubMed  Google Scholar 

6.

Wu J-R, Wang M-L, Liu K-C, Hu M-H, Lee P-Y. Real-time advanced spinal surgery via visible patient model and augmented reality system. Comput Methods Prog Biomed. 2014;113:869–81. https://doi.org/10.1016/j.cmpb.2013.12.021.

Article  Google Scholar 

7.

Gavaghan K, Oliveira-Santos T, Peterhans M, Reyes M, Kim H, Anderegg S, Weber S. Evaluation of a portable image overlay projector for the visualisation of surgical navigation data: phantom studies. Int J Comput Assist Radiol Surg. 2012;7:547–56. https://doi.org/10.1007/s11548-011-0660-7.

CAS  Article  PubMed  Google Scholar 

8.

Nguyen NQ, Priola SM, Ramjist JM, Guha D, Dobashi Y, Lee K, Lu M, Androutsos D, Yang V. Machine vision augmented reality for pedicle screw insertion during spine surgery. J Clin Neurosci. 2020;72:350–6.

Article  Google Scholar 

9.

•• Elmi-Terander A, Burström G, Nachabé R, et al. Augmented reality navigation with intraoperative 3D imaging vs fluoroscopy-assisted free-hand surgery for spine fixation surgery: a matched-control study comparing accuracy. Sci Rep. 2020;10:707. First study comparing the clinical accuracy of pedical screw placement with Augmented Reality Surgical Navigation (ARSN) and free-hand (FH) techniques. This matched-control study demonstrated that ARSN provided higher screw placement accuracy than the FH approach

CAS  Article  Google Scholar 

10.

•• Edström E, Burström G, Persson O, et al. Does Augmented reality navigation increase pedicle screw density compared to free-hand technique in deformity surgery? Single Surgeon Case Series of 44 Patients. Spine (Phila Pa 1976). 2020;45:E1085–e90. Study suggest that ARSN will allow surgeons to increase their pedicle screw density in deformity cases when compared to FH approaches. This suggests that surgeons can use ARSN to place better constructs in deformity cases potentially lowering the need for revision surguries

Article  Google Scholar 

11.

• Edström E, Burström G, Omar A, et al. Augmented reality surgical navigation in spine surgery to minimize staff radiation exposure. Spine (Phila Pa 1976). 2020;45:E45–e53. Demonstrates the ability of AR technologies to lower occupational radiation exposure

Article  Google Scholar 

12.

Burström G, Nachabe R, Homan R, Hoppenbrouwers J, Holthuizen R, Persson O, Edström E, Elmi-Terander A. Frameless patient tracking with adhesive optical skin markers for augmented reality surgical navigation in spine surgery. Spine (Phila Pa 1976). 2020;45:1598–604.

Article  Google Scholar 

13.

Alexander C, Loeb AE, Fotouhi J, Navab N, Armand M, Khanuja HS. Augmented reality for acetabular component placement in direct anterior total hip arthroplasty. J Arthroplast. 2020;35:1636–41.e3.

Article  Google Scholar 

14.

• Weidert S, Wang L, Landes J, et al. Video-augmented fluoroscopy for distal interlocking of intramedullary nails decreased radiation exposure and surgical time in a bovine cadaveric setting. Int J Med Robot Comput Assist Surg. 2019;15:e1995. https://doi.org/10.1002/rcs.1995. Highlights the impact of surgical training level on an AR system's efficacy. The AR system only reduced radiation exposure when utilized by less experienced surgeons

Article  Google Scholar 

15.

Elmi-Terander A, Burström G, Nachabe R, Skulason H, Pedersen K, Fagerlund M, Ståhl F, Charalampidis A, Söderman M, Holmin S, Babic D, Jenniskens I, Edström E, Gerdhem P. Pedicle screw placement using augmented reality surgical navigation with intraoperative 3D imaging. Spine (Phila Pa 1976). 2019;44:517–25. https://doi.org/10.1097/brs.0000000000002876.

Article  Google Scholar 

16.

Cho HS, Park MS, Gupta S, Han I, Kim HS, Choi H, Hong J. Can augmented reality be helpful in pelvic bone cancer surgery? An in vitro study. Clin Orthop Relat Res. 2018;476:1719–25. https://doi.org/10.1007/s11999.0000000000000233.

Article  PubMed  PubMed Central  Google Scholar 

17.

Fischer M, Fuerst B, Lee SC, Fotouhi J, Habert S, Weidert S, Euler E, Osgood G, Navab N. Preclinical usability study of multiple augmented reality concepts for K-wire placement. Int J Comput Assist Radiol Surg. 2016;11:1007–14. https://doi.org/10.1007/s11548-016-1363-x.

Article  PubMed  Google Scholar 

18.

Fallavollita P, Brand A, Wang L, Euler E, Thaller P, Navab N, Weidert S. An augmented reality C-arm for intraoperative assessment of the mechanical axis: a preclinical study. Int J Comput Assist Radiol Surg. 2016;11:2111–7. https://doi.org/10.1007/s11548-016-1426-z.

Article  PubMed  Google Scholar 

19.

Londei R, Esposito M, Diotte B, Weidert S, Euler E, Thaller P, Navab N, Fallavollita P. Intra-operative augmented reality in distal locking. Int J Comput Assist Radiol Surg. 2015;10:1395–403. https://doi.org/10.1007/s11548-015-1169-2.

Article  PubMed  Google Scholar 

20.

Ponce BA, Jennings JK, Clay TB, May MB, Huisingh C, Sheppard ED. Telementoring: use of augmented reality in orthopaedic education: AAOS exhibit selection. J Bone Joint Surg Am. 2014;96:e84.

Article  Google Scholar 

21.

U-Thainual P, Fritz J, Moonjaita C, Ungi T, Flammang A, Carrino JA, Fichtinger G, Iordachita I. MR image overlay guidance: system evaluation for preclinical use. Int J Comput Assist Radiol Surg. 2013;8:365–78. https://doi.org/10.1007/s11548-012-0788-0.

Article  PubMed  Google Scholar 

22.

Shen F, Chen B, Guo Q, Qi Y, Shen Y. Augmented reality patient-specific reconstruction plate design for pelvic and acetabular fracture surgery. Int J Comput Assist Radiol Surg. 2013;8:169–79. https://doi.org/10.1007/s11548-012-0775-5.

Article  PubMed  Google Scholar 

23.

Yeo CT, Ungi T, U-Thainual P, Lasso A, McGraw RC, Fichtinger G. The effect of augmented reality training on percutaneous needle placement in spinal facet joint injections. IEEE Trans Biomed Eng. 2011;58:2031–7. https://doi.org/10.1109/tbme.2011.2132131.

Article  PubMed  Google Scholar 

24.

Navab N, Heining S-M, Traub J. Camera augmented mobile C-arm (CAMC): Calibration, accuracy study, and clinical applications. IEEE Trans Med Imaging. 2010;29:1412–23. https://doi.org/10.1109/tmi.2009.2021947.

Article  PubMed  Google Scholar 

25.

Fischer GS, Deguet A, Csoma C, Taylor RH, Fayad L, Carrino JA, Zinreich SJ, Fichtinger G. MRI image overlay: application to arthrography needle insertion. Comput Aided Surg. 2007;12:2–14. https://doi.org/10.3109/10929080601169930.

Article  PubMed  Google Scholar 

26.

Fichtinger G, Deguet A, Masamune K, Balogh E, Fischer GS, Mathieu H, Taylor RH, Zinreich SJ, Fayad LM. Image overlay guidance for needle insertion in CT scanner. IEEE Trans Biomed Eng. 2005;52:1415–24. https://doi.org/10.1109/tbme.2005.851493.

Article  PubMed  Google Scholar 

27.

Dibble CF, Molina CA. Device profile of the XVision-spine (XVS) augmented-reality surgical navigation system: overview of its safety and efficacy. Expert Rev Med Devices. 2021;18:1–8.

CAS  Article  Google Scholar 

28.

Urakov TM. Augmented reality-assisted pedicle instrumentation: versatility across major instrumentation sets. Spine (Phila Pa 1976). 2020;45:E1622–e6.

Article  Google Scholar 

29.

• Dennler C, Jaberg L, Spirig J, et al. Augmented reality-based navigation increases precision of pedicle screw insertion. J Orthop Surg Res. 2020;15:174. Study shows that the impact and efficacy of AR technologies are conditional on the operator's level of surgical training

Article  Google Scholar 

30.

Urakov TM, Wang MY, Levi AD. Workflow caveats in augmented reality-assisted pedicle instrumentation: Cadaver lab. World Neurosurg. 2019;126:e1449–e55.

Article  Google Scholar 

31.

Gibby JT, Swenson SA, Cvetko S, Rao R, Javan R. Head-mounted display augmented reality to guide pedicle screw placement utilizing computed tomography. Int J Comput Assist Radiol Surg. 2019;14:525–35. https://doi.org/10.1007/s11548-018-1814-7.

Article  PubMed  Google Scholar 

32.

Liu H, Auvinet E, Giles J, Rodriguez Y, Baena F. Augmented reality based navigation for computer assisted hip resurfacing: a proof of concept study. Ann Biomed Eng. 2018;46:1595–605. https://doi.org/10.1007/s10439-018-2055-1.

CAS  Article  PubMed  PubMed Central  Google Scholar 

33.

Hiranaka T, Fujishiro T, Hida Y, Shibata Y, Tsubosaka M, Nakanishi Y, Okimura K, Uemoto H. Augmented reality: the use of the PicoLinker smart glasses improves wire insertion under fluoroscopy. World J Orthop. 2017;8:891–4. https://doi.org/10.5312/wjo.v8.i12.891.

Article  PubMed  PubMed Central  Google Scholar 

34.

Lungu AJ, Swinkels W, Claesen L, Tu P, Egger J, Chen X. A review on the applications of virtual reality, augmented reality and mixed reality in surgical simulation: an extension to different kinds of surgery. Expert Rev Med Devices. 2021;18:47–62.

CAS  Article  Google Scholar 

35.

Keating TC, Jacobs JJ. Augmented reality in orthopedic practice and education. Orthop Clin North Am. 2021;52:15–26.

Article  Google Scholar 

36.

Park BJ, Hunt SJ, Martin C 3rd, Nadolski GJ, Wood BJ, Gade TP. Augmented and mixed reality: technologies for enhancing the future of IR. J Vasc Interv Radiol. 2020;31:1074–82.

Article  Google Scholar 

37.

Nguyen NQ, Cardinell J, Ramjist JM, Lai P, Dobashi Y, Guha D, Androutsos D, Yang VXD. An augmented reality system characterization of placement accuracy in neurosurgery. J Clin Neurosci. 2020;72:392–6.

Article  Google Scholar 

38.

Vávra P, Roman J, Zonča P, Ihnát P, Němec M, Kumar J, Habib N, el-Gendi A. Recent development of augmented reality in surgery: a review. J Healthc Eng. 2017;2017:4574172–9.

Article  Google Scholar 

39.

Bradley MP, Benson JR, Muir JM. Accuracy of acetabular component positioning using computer-assisted navigation in direct anterior total hip arthroplasty. Cureus. 2019;11:e4478.

PubMed  PubMed Central  Google Scholar 

40.

Sadrameli SS, Jafrani R, Staub BN, Radaideh M, Holman PJ. Minimally invasive, stereotactic, wireless, percutaneous pedicle screw placement in the lumbar spine: accuracy rates with 182 consecutive screws. Int J Spine Surg. 2018;12:650–8. https://doi.org/10.14444/5081.

Article  PubMed  PubMed Central  Google Scholar 

41.

Van Duren BH, Sugand K, Wescott R, Carrington R, Hart A. Augmented reality fluoroscopy simulation of the guide-wire insertion in DHS surgery: a proof of concept study. Med Eng Phys. 2018;55:52–9. https://doi.org/10.1016/j.medengphy.2018.02.007.

Article  PubMed  Google Scholar 

42.

Andress S, Johnson A, Unberath M, Winkler AF, Yu K, Fotouhi J, Weidert S, Osgood G, Navab N. On-the-fly augmented reality for orthopedic surgery using a multimodal fiducial. J Med Imaging (Bellingham). 2018;5(2):021209. https://doi.org/10.1117/1.jmi.5.2.021209.full.

Article  Google Scholar 

43.

Fotouhi J, Alexander CP, Unberath M, Taylor G, Lee SC, Fuerst B, Johnson A, Osgood GM, Taylor RH, Khanuja H, Armand M, Navab N. Plan in 2-D, execute in 3-D: an augmented reality solution for cup placement in total hip arthroplasty. J Medical Imaging. 2018;5(2):021205. https://doi.org/10.1117/1.jmi.5.2.021205.full.

Article 

留言 (0)

沒有登入
gif