Gonococcal bacterial load in PrEP users with Mycoplasma genitalium coinfection

1. Kenyon, C, Van Dijck, C, Florence, E. Facing increased sexually transmitted infection incidence in HIV preexposure prophylaxis cohorts: what are the underlying determinants and what can be done?. Curr Opin Infect Dis 2020; 33: 51–58. DOI: 10.1097/QCO.0000000000000621.
Google Scholar | Crossref | Medline2. Hobbs, MM, Sparling, PF, Cohen, MS, et al. Experimental gonococcal infection in male volunteers: cumulative experience with Neisseria gonorrhoeae strains FA1090 and MS11mkC. Front Microbiol 2011; 2: 123.
Google Scholar | Crossref | Medline3. Bissessor, M, Tabrizi, SN, Fairley, CK, et al. Differing neisseria gonorrhoeae bacterial loads in the pharynx and rectum in men who have sex with men: implications for gonococcal detection, transmission, and control. J Clin Microbiol 2011; 49: 4304–4306.
Google Scholar | Crossref | Medline4. van Liere, GAFS, Hoebe, CJPA, Dirks, JAMC, et al. Spontaneous clearance of urogenital, anorectal and oropharyngeal chlamydia trachomatis and neisseria gonorrhoeae in women, MSM and heterosexual men visiting the STI clinic: a prospective cohort study. Sex Transm Infect 2019; 95: 505–510.
Google Scholar | Crossref | Medline5. Van Der Veer, BMJW, Hoebe, CJPA, Dukers-Muijrers, NHTM, et al. Men and women have similar neisseria gonorrhoeae bacterial loads: a comparison of three anatomical sites. J Clin Microbiol 2020; 58: 1–8.
Google Scholar | Crossref6. Priest, D, Ong, JJ, Chow, EPF, et al. Neisseria gonorrhoeae DNA bacterial load in men with symptomatic and asymptomatic gonococcal urethritis. Sex Transm Infect 2017; 93: 478–481.
Google Scholar | Crossref | Medline7. Chow, EPF, Tabrizi, SN, Phillips, S, et al. Neisseria gonorrhoeae bacterial DNA load in the pharynges and saliva of men who have sex with men. J Clin Microbiol 2016; 54: 2485–2490.
Google Scholar | Crossref | Medline | ISI8. Read, TRH, Murray, GL, Danielewski, JA, et al. Symptoms, sites, and significance of mycoplasma genitalium in men who have sex with men. Emerg Infect Dis 2019; 25: 719–727.
Google Scholar | Crossref | Medline9. Richardson, D, Lewis, DA, Jeoffreys, NJ, et al. Mycoplasma genitalium coinfection in men with symptomatic gonococcal urethritis. Sex Transm Infect 2020; 97: 1–5.
Google Scholar10. Stupiansky, NW, Van Der Pol, B, Williams, JA, et al. The natural history of incident gonococcal infection in adolescent women. Sex Transm Dis 2011; 38: 750–754.
Google Scholar | Crossref | Medline11. Mensforth, S, Ayinde, OC, Ross, J. Spontaneous clearance of genital and extragenital neisseria gonorrhoeae: data from GToG. Sex Transm Infect 2020; 96: 556–561.
Google Scholar | Crossref | Medline12. Van Dessel, H . More symptomatic infections and higher bacterial load in neisseria gonorrhoeae and Chlamydia trachomatis co-infections compared to Neisseria gonorrhoeae single infections. In: 31rst ECCMID Vienna, Austria, .
Google Scholar13. Vuylsteke, B, Reyniers, T, De Baetselier, I, et al. Daily and event-driven pre-exposure prophylaxis for men who have sex with men in Belgium: results of a prospective cohort measuring adherence, sexual behaviour and STI incidence. J Int AIDS Soc 2019; 22: e25407.
Google Scholar | Crossref | Medline14. Hopkins, MJ, Ashton, LJ, Alloba, F, et al. Validation of a laboratory-developed real-time PCR protocol for detection of chlamydia trachomatis and neisseria gonorrhoeae in urine. Sex Transm Infect 2010; 86: 207–211.
Google Scholar | Crossref | Medline15. Chen, C-Y, Chi, KH, Alexander, S, et al. A real-time quadriplex PCR assay for the diagnosis of rectal lymphogranuloma venereum and non-lymphogranuloma venereum Chlamydia trachomatis infections. Sex Transm Infect 2008; 84: 273–276.
Google Scholar | Crossref | Medline | ISI16. Müller, EE, Venter, JME, Magooa, MP, et al. Development of a rotor-gene real-time PCR assay for the detection and quantification of Mycoplasma genitalium. J Microbiol Methods 2012; 88: 311–315.
Google Scholar | Crossref | Medline17. McGowin, CL, Totten, PA. The unique microbiology and molecular pathogenesis of mycoplasma genitalium. J Infect Dis 2017; 216: S382–S388.
Google Scholar | Crossref | Medline18. Criss, AK, Seifert, HS. A bacterial siren song: intimate interactions between neisseria and neutrophils. Nat Rev Microbiol 2012; 10: 178–190.
Google Scholar | Crossref | Medline19. Lovett, A, Duncan, JA. Human immune response and the natural history of neisseria gonorrhoeae infection. Front Immunol 2019; 10: 1–10.
Google Scholar | Medline20. Batteiger, BE, Xu, F, Johnson, RE, et al. Protective immunity to chlamydia trachomatis genital infection: evidence from human studies. J Infect Dis 2010; 201(Suppl 2S2): S178–S189. DOI: 10.1086/652400.
Google Scholar | Crossref | Medline21. Wijers, JNAP, Van Liere, GAFS, Dukers-Muijrers, NHTM, et al. Men and women repeatedly infected with chlamydia trachomatis have a lower urogenital bacterial load. Sex Transm Dis 2020; 47: e51–e53.
Google Scholar | Crossref | Medline22. Gupta, K, Bakshi, RK, Van Der Pol, B, et al. Repeated Chlamydia trachomatis infections are associated with lower bacterial loads. Epidemiol Infect 2019; 147: 16–18.
Google Scholar | Crossref23. Walker, J, Tabrizi, SN, Fairley, CK, et al. Chlamydia trachomatis incidence and re-infection among young women - behavioural and microbiological characteristics. PLoS One 2012; 7(5): e37778.
Google Scholar | Crossref | Medline

留言 (0)

沒有登入
gif