1.
Goodman, SM, Cronstein, BN, Bykerk, VP. Outcomes related to methotrexate dose and route of administration in patients with rheumatoid arthritis: a systematic literature review. Clin Exp Rheumatol. 2015;33(2):272-278.
Google Scholar |
Medline2.
NHMJ . Cancer chemotherapy: targeting folic acid synthesis. Cancer Manag Res. 2010;2:293-301. doi:
10.2147/CMR.S10043. Google Scholar |
Crossref |
Medline3.
Berthelot, JM, Maugars, Y, Hamidou, M, et al. Pancytopenia and severe cytopenia induced by low-dose methotrexate. Rev Rhum Engl Ed. 1995;62(7-8):477-486.
Google Scholar |
Medline4.
Howard, SC, McCormick, J, Pui, C, Buddington, RK, Harvey, RD. Preventing and managing toxicities of high-dose methotrexate. Oncologist. 2016;21(12):1471-1482. doi:
10.1634/theoncologist.2015-0164. Google Scholar |
Crossref |
Medline5.
Svanström, H, Lund, M, Melbye, M, Pasternak, B. Concomitant use of low-dose methotrexate and NSAIDs and the risk of serious adverse events among patients with rheumatoid arthritis. Pharmacoepidemiol Drug Saf. 2018;27(8):885-893. doi:
10.1002/pds.4555. Google Scholar |
Crossref |
Medline6.
Mori, S, Hidaka, M, Kawakita, T, et al. Factors associated with myelosuppression related to low-dose methotrexate therapy for inflammatory rheumatic diseases. PLoS One. 2016;11(4). doi:
10.1371/journal.pone.0154744. Google Scholar |
Crossref7.
Mitsuboshi, S. Risk of haematological events and preventive effect of folic acid in methotrexate users with chronic kidney disease and rheumatoid arthritis: analysis of the Japanese Adverse Drug Event Report database. Br J Clin Pharmacol. 2021;87(5):2286-2289. doi:
10.1111/bcp.14641. Google Scholar |
Crossref |
Medline8.
Bourré-Tessier, J, Haraoui, B. Methotrexate drug interactions in the treatment of rheumatoid arthritis: a systematic review. J Rheumatol. 2010;37(7):1416-1421. doi:
10.3899/jrheum.090153. Google Scholar |
Crossref |
Medline9.
Ivanyuk, A, Livio, F, Biollaz, J, Buclin, T. Renal drug transporters and drug interactions. Clin Pharmacokinet. 2017;56(8):825-892. doi:
10.1007/s40262-017-0506-8. Google Scholar |
Crossref |
Medline10.
Hira, D, Terada, T. BCRP/ABCG2 and high-alert medications: biochemical, pharmacokinetic, pharmacogenetic, and clinical implications. Biochem Pharmacol. 2018;147:201-210. doi:
10.1016/j.bcp.2017.10.004. Google Scholar |
Crossref |
Medline11.
FitzGerald, JD, Dalbeth, N, Mikuls, T, et al. 2020 American College of Rheumatology Guideline for the Management of Gout. Arthritis Care Res. 2020;72(6):744-760. doi:
10.1002/acr.24180 Google Scholar |
Crossref12.
Spina, M, Nagy, Z, Ribera, JM, et al. FLORENCE: a randomized, double-blind, phase III pivotal study of febuxostat versus allopurinol for the prevention of tumor lysis syndrome (TLS) in patients with hematologic malignancies at intermediate to high TLS risk. Ann Oncol. 2015;26(10):2155-2161. doi:
10.1093/annonc/mdv317. Google Scholar |
Crossref |
Medline13.
Chen, CC, Chen, CC, Chang, CJ, et al. Hypersensitivity and cardiovascular risks related to allopurinol and febuxostat therapy in Asians: a population-based cohort study and meta-analysis. Clin Pharmacol Ther. 2019;106(2):391-401. doi:
10.1002/cpt.1377. Google Scholar |
Crossref |
Medline14.
Lehtisalo, M, Keskitalo, JE, Tornio, A, et al. Febuxostat, but not allopurinol, markedly raises the plasma concentrations of the breast cancer resistance protein substrate rosuvastatin. Clin Transl Sci. 2020;13(6):1236-1243. doi:
10.1111/cts.12809. Google Scholar |
Crossref |
Medline15.
Miyata, H, Takada, T, Toyoda, Y, Matsuo, H, Ichida, K, Suzuki, H. Identification of febuxostat as a new strong ABCG2 inhibitor: potential applications and risks in clinical situations. Front Pharmacol. 2016;7:518. doi:
10.3389/fphar.2016.00518. Google Scholar |
Crossref |
Medline16.
Ikemura, K, Hiramatsu, S, ichi Shinogi, Y, et al. Concomitant febuxostat enhances methotrexate-induced hepatotoxicity by inhibiting breast cancer resistance protein. Sci Rep. 2019;9(1):20359. doi:
10.1038/s41598-019-56900-2. Google Scholar |
Crossref |
Medline17.
Kanbayashi, Y, Nomura, K, Okamoto, K, et al. Statistical examination to determine whether only 48-h value for serum concentration during high-dose methotrexate therapy is a predictor for clinical adverse events using ordered logistic regression analysis. Ann Hematol. 2010;89(10):965-969. doi:
10.1007/s00277-010-0965-6. Google Scholar |
Crossref |
Medline18.
Schmiegelow, K. Advances in individual prediction of methotrexate toxicity: a review. Br J Haematol. 2009;146(5):489-503. doi:
10.1111/j.1365-2141.2009.07765.x. Google Scholar |
Crossref |
Medline19.
Bannwarth, B, Péhourcq, F, Schaeverbeke, T, Dehais, J. Clinical pharmacokinetics of low-dose pulse methotrexate in rheumatoid arthritis. Clin Pharmacokinet. 1996;30(3):194-210. doi:
10.2165/00003088-199630030-00002. Google Scholar |
Crossref |
Medline20.
Wilkinson, DG. Allopurinol and agranulocytosis. Lancet. 1977;2(8051):1282-1283. doi:
10.1016/S0140-6736(77)92683-6. Google Scholar |
Crossref |
Medline21.
Fleischmann, R. Safety and efficacy of disease-modifying antirheumatic agents in rheumatoid arthritis and juvenile rheumatoid arthritis. Expert Opin Drug Saf. 2003;2(4):347-365. doi:
10.1517/14740338.2.4.347. Google Scholar |
Crossref |
Medline22.
Strang, A, Pullar, T. Methotrexate toxicity induced by acute renal failure. J R Soc Med. 2004;97(11):536-537. doi:
10.1258/jrsm.97.11.536. Google Scholar |
SAGE Journals |
ISI
留言 (0)