MTORC1 signaling as a biomarker in major depressive disorder and its pharmacological modulation by novel rapid-acting antidepressants

1. Otte, C, Gold, SM, Penninx, BW, et al Major depressive disorder. Nat Rev Dis Primers 2016; 2: 16065.
Google Scholar | Crossref | Medline | ISI2. GBD 2017 Disease and Injury Incidence and Prevalence Collaborators . Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease study 2017. Lancet 2018; 392: 1789–1858.
Google Scholar | Crossref | Medline3. Al Shweiki, MR, Oeckl, P, Steinacker, P, et al Major depressive disorder: insight into candidate cerebrospinal fluid protein biomarkers from proteomics studies. Expert Rev Proteomics 2017; 14: 499–514.
Google Scholar | Crossref | Medline4. Frances, AJ, Widiger, T. Psychiatric diagnosis: lessons from the DSM-IV past and cautions for the DSM-5 future. Annu Rev Clin Psychol 2012; 8: 109–130.
Google Scholar | Crossref | Medline | ISI5. Montgomery, SA, Asberg, M. A new depression scale designed to be sensitive to change. Br J Psychiatry 1979; 134: 382–389.
Google Scholar | Crossref | Medline | ISI6. Hamilton, M. A rating scale for depression. J Neurol Neurosurg Psychiatry 1960; 23: 56–62.
Google Scholar | Crossref | Medline | ISI7. Rush, AJ, Carmody, T, Reimitz, PE. The Inventory of Depressive Symptomatology (IDS): clinician (IDS-C) and self-report (IDS-SR) ratings of depressive symptoms. Int J Methods Psychiatr Res 2000; 9: 45–59.
Google Scholar | Crossref8. Cohen, AF, Burggraaf, J, van Gerven, JM, et al The use of biomarkers in human pharmacology (Phase I) studies. Annu Rev Pharmacol Toxicol 2015; 55: 55–74.
Google Scholar | Crossref | Medline9. Kennis, M, Gerritsen, L, van Dalen, M, et al Prospective biomarkers of major depressive disorder: a systematic review and meta-analysis. Mol Psychiatry 2020; 25: 321–338.
Google Scholar | Crossref | Medline10. Ignácio, ZM, Réus, GZ, Arent, CO, et al New perspectives on the involvement of mTOR in depression as well as in the action of antidepressant drugs. Br J Clin Pharmacol 2016; 82: 1280–1290.
Google Scholar | Crossref | Medline11. Fogaça, MV, Fukumoto, K, Franklin, T, et al N-Methyl-D-aspartate receptor antagonist d-methadone produces rapid, mTORC1-dependent antidepressant effects. Neuropsychopharmacology 2019; 44: 2230–2238.
Google Scholar | Crossref | Medline12. Fukumoto, K, Fogaça, MV, Liu, R-J, et al Activity-dependent brain-derived neurotrophic factor signaling is required for the antidepressant actions of (2R,6R)-hydroxynorketamine. Proc Natl Acad Sci USA 2019; 116: 297–302.
Google Scholar | Crossref | Medline13. Kato, T, Pothula, S, Liu, RJ, et al Sestrin modulator NV-5138 produces rapid antidepressant effects via direct mTORC1 activation. J Clin Investig 2019; 129: 2542–2554.
Google Scholar | Crossref | Medline14. Li, N, Lee, B, Liu, R-J, et al mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 2010; 329: 959–964.
Google Scholar | Crossref | Medline | ISI15. Liu, RJ, Fuchikami, M, Dwyer, JM, et al GSK-3 inhibition potentiates the synaptogenic and antidepressant-like effects of subthreshold doses of ketamine. Neuropsychopharmacology 2013; 38: 2268–2277.
Google Scholar | Crossref | Medline | ISI16. Kaizuka, T, Hara, T, Oshiro, N, et al Tti1 and Tel2 are critical factors in mammalian target of Rapamycin complex assembly. J Biol Chem 2010; 285: 20109–20116.
Google Scholar | Crossref | Medline17. Kim, D-H, Sarbassov, DD, Ali, SM, et al GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Mol Cell 2003; 11: 895–904.
Google Scholar | Crossref | Medline | ISI18. Wullschleger, S, Loewith, R, Hall, MN. TOR signaling in growth and metabolism. Cell 2006; 124: 471–484.
Google Scholar | Crossref | Medline | ISI19. Laplante, M, Sabatini, DM. MTOR signaling in growth control and disease. Cell 2012; 149: 274–293.
Google Scholar | Crossref | Medline | ISI20. Bar-Peled, L, Sabatini, DM. Regulation of mTORC1 by amino acids. Trends Cell Biol 2014; 24: 400–406.
Google Scholar | Crossref | Medline21. Huang, Y, Kang, BN, Tian, J, et al The cationic amino acid transporters CAT1 and CAT3 mediate NMDA receptor activation-dependent changes in elaboration of neuronal processes via the mammalian target of rapamycin mTOR pathway. J Neurosci 2007; 27: 449–458.
Google Scholar | Crossref | Medline22. Ota, KT, Liu, R-J, Voleti, B, et al REDD1 is essential for stress-induced synaptic loss and depressive behavior. Nat Med 2014; 20: 531–535.
Google Scholar | Crossref | Medline | ISI23. Page, G, Khidir, FAL, Pain, S, et al Group I metabotropic glutamate receptors activate the p70S6 kinase via both mammalian target of rapamycin (mTOR) and extracellular signal-regulated kinase (ERK 1/2) signaling pathways in rat striatal and hippocampal synaptoneurosomes. Neurochem Int 2006; 49: 413–421.
Google Scholar | Crossref | Medline24. Sofer, A, Lei, K, Johannessen, CM, et al Regulation of mTOR and cell growth in response to energy stress by REDD1. Mol Cell Biol 2005; 25: 5834–5845.
Google Scholar | Crossref | Medline25. Perluigi, M, Di Domenico, F, Butterfield, DA. mTOR signaling in aging and neurodegeneration: at the crossroad between metabolism dysfunction and impairment of autophagy. Neurobiol Dis 2015; 84: 39–49.
Google Scholar | Crossref | Medline26. Abdallah, CG, Adams, TG, Kelmendi, B, et al Ketamine’s mechanism of action: a path to rapid-acting antidepressants. Depress Anxiety 2016; 33: 689–697.
Google Scholar | Crossref | Medline | ISI27. Duman, RS, Deyama, S, Fogaça, MV. Role of BDNF in the pathophysiology and treatment of depression: activity-dependent effects distinguish rapid-acting antidepressants. Eur J Neurosci 2021; 53: 126–139.
Google Scholar | Crossref | Medline28. Citri, A, Malenka, RC. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 2008; 33: 18–41.
Google Scholar | Crossref | Medline | ISI29. Gonul, AS, Akdeniz, F, Taneli, F, et al Effect of treatment on serum brain-derived neurotrophic factor levels in depressed patients. Eur Arch Psychiatry Clin Neurosci 2005; 255: 381–386.
Google Scholar | Crossref | Medline | ISI30. Karolewicz, B, Cetin, M, Aricioglu, F. Beyond the glutamate N-methyl D-aspartate receptor in major depressive disorder: the mTOR signaling pathway/majör depresif bozuklukta glutamat N-metil-D-aspartat reseptörlerinin ötesi: mTOR sinyal yolağı. Klin Psikofarmakol Bülteni/Bull Clin Psychopharmacol 2011; 21: 1–6.
Google Scholar31. Kang, HJ, Voleti, B, Hajszan, T, et al Decreased expression of synapse-related genes and loss of synapses in major depressive disorder. Nat Med 2012; 18: 1413–1417.
Google Scholar | Crossref | Medline | ISI32. Beer, JS, Lombardo, MV, Bhanji, JP. Roles of medial prefrontal cortex and orbitofrontal cortex in self-evaluation. J Cogn Neurosci 2010; 22: 2108–2119.
Google Scholar | Crossref | Medline | ISI33. MacQueen, G, Frodl, T. The hippocampus in major depression: evidence for the convergence of the bench and bedside in psychiatric research? Mol Psychiatry 2011; 16: 252–264.
Google Scholar | Crossref | Medline | ISI34. Jernigan, CS, Goswami, DB, Austin, MC, et al The mTOR signaling pathway in the prefrontal cortex is compromised in major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35: 1774–1779.
Google Scholar | Crossref | Medline35. Li, N, Liu, R-J, Dwyer, JM, et al Glutamate N-methyl-D-aspartate receptor antagonists rapidly reverse behavioral and synaptic deficits caused by chronic stress exposure. Biol Psychiatry 2011; 69: 754–761.
Google Scholar | Crossref | Medline | ISI36. Popoli, M, Yan, Z, McEwen, BS, et al The stressed synapse: the impact of stress and glucocorticoids on glutamate transmission. Nat Rev Neurosci 2011; 13: 22–37.
Google Scholar | Crossref | Medline | ISI37. Krystal, JH, Sanacora, G, Duman, RS. Rapid-acting glutamatergic antidepressants: the path to ketamine and beyond. Biol Psychiatry 2013; 73: 1133–1141.
Google Scholar | Crossref | Medline | ISI38. Chandran, A, Iyo, AH, Jernigan, CS, et al Reduced phosphorylation of the mTOR signaling pathway components in the amygdala of rats exposed to chronic stress. Prog Neuropsychopharmacol Biol Psychiatry 2012; 40: 240–245.
Google Scholar | Crossref | Medline39. Tang, J, Xue, W, Xia, B, et al Involvement of normalized NMDA receptor and mTOR-related signaling in rapid antidepressant effects of Yueju and ketamine on chronically stressed mice. Sci Rep 2015; 5: 13573.
Google Scholar | Crossref | Medline40. Abdallah, CG, Averill, LA, Krystal, JH. Ketamine as a promising prototype for a new generation of rapid-acting antidepressants. Ann NY Acad Sci 2015; 1344: 66–77.
Google Scholar | Crossref | Medline41. Gerhard, DM, Pothula, S, Liu, R-J, et al GABA interneurons are the cellular trigger for Ketamine’s rapid antidepressant actions. J Clin Investig 2020; 130: 1336–1349.
Google Scholar | Crossref | Medline42. Pazini, FL, Cunha, MP, Rosa, JM, et al Creatine, similar to ketamine, counteracts depressive-like behavior induced by corticosterone via PI3K/Akt/mTOR pathway. Mol Neurobiol 2016; 53: 6818–6834.
Google Scholar | Crossref | Medline43. Pazini, FL, Rosa, JM, Camargo, A, et al MTORC1-dependent signaling pathway underlies the rapid effect of creatine and ketamine in the novelty-suppressed feeding test. Chem Biol Interact 2020; 332: 109281.
Google Scholar | Crossref | Medline44. Fraga, DB, Costa, AP, Olescowicz, G, et al Ascorbic acid presents rapid behavioral and hippocampal synaptic plasticity effects. Prog Neuropsychopharmacol Biol Psychiatry 2020; 96: 109757.
Google Scholar | Crossref | Medline45. Liu, W, Wang, J, Xie, Z, et al Regulation of glutamate transporter 1 via BDNF-TrkB signaling plays a role in the anti-apoptotic and antidepressant effects of ketamine in chronic unpredictable stress model of depression. Psychopharmacology 2016; 233: 405–415.
Google Scholar | Crossref | Medline46. Zhou, W, Wang, N, Yang, C, et al Ketamine-induced antidepressant effects are associated with AMPA receptors-mediated upregulation of mTOR and BDNF in rat hippocampus and prefrontal cortex. Eur Psychiatry 2014; 29: 419–423.
Google Scholar | Crossref | Medline | ISI

留言 (0)

沒有登入
gif