Review of Whole Head Experimental Cochlear Promontory Vibration with Bone Conduction Stimulation and Investigation of Experimental Setup Effects

Chang, Y., Kim, N., Stenfelt, S. (2016). The development of a whole-head human finite-element model for simulation of the transmission of bone-conducted sound. Journal of the Acoustical Society of America, 140(3), 1635–1651. https://doi.org/10.1121/1.4962443
Google Scholar | Crossref | Medline Chang, Y., Stenfelt, S. (2019). Characteristics of bone-conduction devices simulated in a finite-element model of a whole human head. Trends in Hearing, 23, 1–20. https://doi.org/10.1177/2331216519836053
Google Scholar | SAGE Journals Dobrev, I., Sim, J. H., Pfiffner, F., Huber, A. M., Roosli, C. (2019). Experimental investigation of promontory motion and intracranial pressure following bone conduction: Stimulation site and coupling type dependence. Hearing Research, 378, 108–125. https://doi.org/10.1016/j.heares.2019.03.005
Google Scholar | Crossref | Medline Dobrev, I., Stenfelt, S., Röösli, C., Bolt, L., Pfiffner, F., Gerig, R., Huber, A., … Sim, J. H. (2016). Influence of stimulation position on the sensitivity for bone conduction hearing aids without skin penetration. International Journal of Audiology, 55(8), 439–446. https://doi.org/10.3109/14992027.2016.1172120
Google Scholar | Crossref | Medline Eeg-Olofsson, M., Stenfelt, S., Granstrom, G. (2011). Implications for contralateral bone-conducted transmission as measured by cochlear vibrations. Otology & Neurotology, 32(2), 192–198. https://doi.org/10.1097/MAO.0b013e3182009f16
Google Scholar | Crossref | Medline Eeg-Olofsson, M., Stenfelt, S., Taghavi, H., Reinfeldt, S., Hakansson, B., Tengstrand, T., Finizia, C. (2013). Transmission of bone conducted sound - correlation between hearing perception and cochlear vibration. Hearing Research, 306, 11–20. https://doi.org/10.1016/j.heares.2013.08.015
Google Scholar | Crossref | Medline Eeg-Olofsson, M., Stenfelt, S., Tjellstrom, A., Granstrom, G. (2008). Transmission of bone-conducted sound in the human skull measured by cochlear vibrations. International Journal of Audiology, 47(12), 761–769. https://doi.org/10.1080/14992020802311216
Google Scholar | Crossref | Medline Flottorp, G., Solberg, S. (1976). Mechanical impedance of human headbones (forehead and mastoid portion of temporal bone) measured under ISO-IEC conditions. Journal of the Acoustical Society of America, 59(4), 899–906. https://doi.org/10.1121/1.380949
Google Scholar | Crossref | Medline Hakansson, B., Eeg-Olofsson, M., Reinfeldt, S., Stenfelt, S., Granstrom, G. (2008). Percutaneous versus transcutaneous bone conduction implant system: A feasibility study on a cadaver head. Otology & Neurotology, 29(8), 1132–1139. https://doi.org/10.1097/MAO.0b013e31816fdc90
Google Scholar | Crossref | Medline Håkansson, B., Reinfeldt, S., Eeg-Olofsson, M., Östli, P., Taghavi, H., Adler, J., Gabrielsson, J., … Granstrom, G. (2010). A novel bone conduction implant (BCI): Engineering aspects and pre-clinical studies. International Journal of Audiology, 49(3), 203–215. https://doi.org/10.3109/14992020903264462
Google Scholar | Crossref | Medline Hakansson, B., Woelflin, F., Tjellstrom, A., Hodgetts, W. (2020). The mechanical impedance of the human skull via direct bone conduction implants. Medical Devices: Evidence and Research, 13, 293–313. https://doi.org/10.2147/MDER.S260732
Google Scholar | Crossref | Medline Kim, N., Chang, Y., Stenfelt, S. (2014). A three-dimensional finite-element model of a human dry skull for bone-conduction hearing. BioMed Research International, 2014, 519429. https://doi.org/10.1155/2014/519429
Google Scholar | Crossref | Medline Mattingly, J. K., Banakis Hartl, R. M., Jenkins, H. A., Tollin, D. J., Cass, S. P., Greene, N. T. (2020). A comparison of intracochlear pressures during ipsilateral and contralateral stimulation With a bone conduction implant. Ear and Hearing, 41(2), 312–322. https://doi.org/10.1097/AUD.0000000000000758
Google Scholar | Crossref | Medline Mattingly, J. K., Greene, N. T., Jenkins, H. A., Tollin, D. J., Easter, J. R., Cass, S. P. (2015). Effects of skin thickness on cochlear input signal using transcutaneous bone conduction implants. Otology & Neurotology, 36(8), 1403–1411. https://doi.org/10.1097/MAO.0000000000000814
Google Scholar | Crossref | Medline Prodanovic, S., Stenfelt, S. (2020). Consequences of mastoidectomy on bone conducted sound based on simulations in a whole human head. Otology & Neurotology, 41(9), e1158–e1166. https://doi.org/10.1097/MAO.0000000000002748
Google Scholar | Crossref | Medline Rigato, C., Reinfeldt, S., Hakansson, B., Freden Jansson, K. J., Renvall, E., Eeg-Olofsson, M. (2018). Direct bone conduction stimulation: Ipsilateral effect of different transducer attachments in active transcutaneous devices. Hearing Research, 361, 103–112. https://doi.org/10.1016/j.heares.2018.01.007
Google Scholar | Crossref | Medline Rosowski, J. J., Chien, W., Ravicz, M. E., Merchant, S. N. (2007). Testing a method for quantifying the output of implantable middle ear hearing devices. Audiology and Neurotology, 12(4), 265–276. https://doi.org/10.1159/000101474
Google Scholar | Crossref | Medline Stalnaker, R. L., Fogle, J. L. (1971). Driving point impedance characteristics of the head. Journal of Biomechanics, 4(2), 127–139. https://doi.org/10.1016/0021-9290(71)90023-6
Google Scholar | Crossref | Medline | ISI Stenfelt, S. (2006). Middle ear ossicles motion at hearing thresholds with air conduction and bone conduction stimulation. Journal of the Acoustical Society of America, 119(5), 2848–2858. https://doi.org/10.1121/1.2184225
Google Scholar | Crossref | Medline Stenfelt, S. (2011). Acoustic and physiologic aspects of bone conduction hearing. Advances in Oto-Rhino-Laryngology, 71, 10–21. https://doi.org/10.1159/000323574
Google Scholar | Crossref | Medline Stenfelt, S. (2012a). Bone conduction and the middle Ear. In Puria, S., Popper, A. N., Fay, R. F. (Eds.), Springer handbook of auditory research: The middle Ear: Science, otosurgery, and technology (pp. 135–169). Springer.
Google Scholar Stenfelt, S. (2012b). Transcranial attenuation of bone-conducted sound when stimulation is at the mastoid and at the bone conduction hearing Aid position. Otology & Neurotology, 33(2), 105–114. https://doi.org/10.1097/MAO.0b013e31823e28ab
Google Scholar | Crossref | Medline Stenfelt, S. (2015). Inner ear contribution to bone conduction hearing in the human. Hearing Research, 329, 41–51. https://doi.org/10.1016/j.heares.2014.12.003
Google Scholar | Crossref | Medline Stenfelt, S. (2016). Model predictions for bone conduction perception in the human. Hearing Research, 340, 135–143. https://doi.org/10.1016/j.heares.2015.10.014
Google Scholar | Crossref | Medline Stenfelt, S. (2020). Investigation of mechanisms in bone conduction hyperacusis with third window pathologies based on model predictions. Frontiers in Neurology, 11, 966. https://doi.org/10.3389/fneur.2020.00966
Google Scholar | Crossref | Medline Stenfelt, S., Goode, R. L. (2005a). Bone-conducted sound: Physiological and clinical aspects. Otology & Neurotology, 26(6), 1245–1261. https://doi.org/10.1097/01.mao.0000187236.10842.d5
Google Scholar | Crossref | Medline Stenfelt, S., Goode, R. L. (2005b). Transmission properties of bone conducted sound: Measurements in cadaver heads. Journal of the Acoustical Society of America, 118(4), 2373–2391. https://doi.org/10.1121/1.12005847
Google Scholar | Crossref | Medline Stenfelt, S., Hakansson, B., Tjellstrom, A. (2000). Vibration characteristics of bone conducted sound in vitro. Journal of the Acoustical Society of America, 107(1), 422–431. https://doi.org/10.1121/1.428314
Google Scholar | Crossref | Medline Stenfelt, S., Hato, N., Goode, R. L. (2002). Factors contributing to bone conduction: The middle ear. Journal of the Acoustical Society of America, 111(2), 947–959. https://doi.org/10.1121/1.1432977
Google Scholar | Crossref | Medline | ISI Stenfelt, S. P., Hakansson, B. E. (1999). Sensitivity to bone-conducted sound: Excitation of the mastoid vs the teeth. Scandinavian Audiology, 28(3), 190–198. https://doi.org/10.1080/010503999424761
Google Scholar | Crossref | Medline Surendran, S., Stenfelt, S. (2021). The outer ear pathway during hearing by bone conduction. In press.
Google Scholar Tjellstrom, A., Hakansson, B., Granstrom, G. (2001). Bone-anchored hearing aids - Current status in adults and children. Otolaryngologic Clinics of North America, 34(2), 337–364. https://doi.org/10.1016/S0030-6665(05)70335-2
Google Scholar | Crossref | Medline Toll, L. E., Emanuel, D. C., Letowski, T. (2011). Effect of static force on bone conduction hearing thresholds and comfort. International Journal of Audiology, 50(9), 632–635. https://doi.org/10.3109/14992027.2011.568013
Google Scholar | Crossref | Medline Zhao, M., Fridberger, A., Stenfelt, S. (2021). Vibration direction sensitivity of the cochlea with bone conduction stimulation in Guinea pigs. Scientific Reports, 11(1), 2855. https://doi.org/10.1038/s41598-021-82268-3
Google Scholar | Crossref | Medline

留言 (0)

沒有登入
gif